Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 12(9): 3585-3594, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38456189

ABSTRACT

Biochar can improve the mechanical properties of portland cement paste and concrete. In this work, we produced algal biochar-zinc (biochar-Zn) and algal biochar-calcium (biochar-Ca) nanocomposite particles and studied their effect on the hydration kinetics and compressive strength of cement paste. Results show that 3 wt % biochar-Zn delayed peak heat evolution during cement hydration from 8.3 to 10.0 h, while 3 wt % addition of biochar-Ca induced a minor acceleration of peak heat from 8.3 to 8.2 h. Both biochar-Zn and biochar-Ca nanocomposite particles increased the compressive strength of cement paste at 28 days by 22.6 and 17.0%, respectively. Data substantiate that retardation or minor acceleration of the reaction kinetics was due exclusively to the presence of Zn and Ca phases, respectively, while the enhanced strength was attributed to a nucleation effect induced by such phases and the internal curing effect of biochar.

2.
Materials (Basel) ; 12(17)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470506

ABSTRACT

Electrochemical chloride removal (ECR) from reinforced concrete can be considered as an environment-friendly technique since it can reduce the environmental issues arising from demolition and reconstruction. In this study, we used ultrasonic waves to promote the ECR efficiency without increasing the current density so as to shorten the overall power-on time, lowering the power consumption and electricity-induced material damage. Rebar-embedded cement mortar specimens were prepared and a set of ultrasonic-assisted ECR test devices was designed. For obtaining the optimal parameters, different ultrasonic frequencies and powers were adopted to conduct the ECR test. After that, the discharged and residual chloride ion amounts were detected to characterize the ECR efficiency. The corrosion behavior of rebar was characterized by electrochemical method. It was found that ultrasonic waves can not only promote the discharge of chloride ions, but also promote the passivation process of steel bar. For this investigation, the ultrasonic waves with a frequency of 40 Hz and a power of 60 W had the best auxiliary effect and could reduce the work time by 64%. It is considered that the ultrasound-assisted method has potential to promote the application possibilities of the ECR technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...