Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Respir Med Case Rep ; 51: 102054, 2024.
Article in English | MEDLINE | ID: mdl-39044804

ABSTRACT

We presented two cases of Cryptococcus albidus fungemia in men who were identified with millary nodules by chest computed tomography (CT). They present cough and fever, with no other abnormal physical examination. The patients were treated successfully with a week-long course of voriconazole tablets. Accurate microbiological diagnosis of NGS and effective therapy as antifungal treatment of voriconazole tablet are critical for C albidus infection. Total of 18 cases of C albidus infection cases were identified from 2000 years to now, eight of which were invasive C albidus infection, and ten were noninvasive infection. None died cases were reported in noninvasive infection.

2.
Front Cell Dev Biol ; 12: 1349379, 2024.
Article in English | MEDLINE | ID: mdl-38344750

ABSTRACT

[This corrects the article DOI: 10.3389/fcell.2023.1187989.].

3.
Front Cell Dev Biol ; 11: 1187989, 2023.
Article in English | MEDLINE | ID: mdl-37261073

ABSTRACT

In recent years, the relationship between lipid metabolism and tumour immunotherapy has been thoroughly investigated. An increasing number of studies have shown that abnormal gene expression and ectopic levels of metabolites related to fatty acid synthesis or fatty acid oxidation affect tumour metastasis, recurrence, and drug resistance. Tumour immunotherapy that aims to promote an antitumour immune response has greatly improved the outcomes for tumour patients. However, lipid metabolism reprogramming in tumour cells or tumour microenvironment-infiltrating immune cells can influence the antitumour response of immune cells and induce tumor cell immune evasion. The recent increase in the prevalence of obesity-related cancers has drawn attention to the fact that obesity increases fatty acid oxidation in cancer cells and suppresses the activation of immune cells, thereby weakening antitumour immunity. This article reviews the changes in lipid metabolism in cells in the tumour microenvironment and describes the relationship between lipid metabolism reprogramming in multiple cell types and tumour immunotherapy.

4.
Front Oncol ; 13: 1119369, 2023.
Article in English | MEDLINE | ID: mdl-36845720

ABSTRACT

Low response rate and treatment resistance are frequent problems in the immunotherapy of tumors, resulting in the unsatisfactory therapeutic effects. Ferroptosis is a form of cell death characterized by the accumulation of lipid peroxides. In recent years, it has been found that ferroptosis may be related to the treatment of cancer. Various immune cells (including macrophages and CD8+ T cells) can induce ferroptosis of tumor cells, and synergistically enhance the anti-tumor immune effects. However, the mechanisms are different for each cell types. DAMP released in vitro by cancer cells undergoing ferroptosis lead to the maturation of dendritic cells, cross-induction of CD8+ T cells, IFN-γ production and M1 macrophage production. Thus, it activates the adaptability of the tumor microenvironment and forms positive feedback of the immune response. It suggests that induction of ferroptosis may contribute to reducing resistance of cancer immunotherapy and has great potential in cancer therapy. Further research into the link between ferroptosis and tumor immunotherapy may offer hope for those cancers that are difficult to treat. In this review, we focus on the role of ferroptosis in tumor immunotherapy, explore the role of ferroptosis in various immune cells, and discuss potential applications of ferroptosis in tumor immunotherapy.

5.
Article in English | MEDLINE | ID: mdl-34367304

ABSTRACT

Alveolar bone defects (ABDs) were a perennial problem, especially in the aged. Bisphosphonates, especially etidronate sodium (ET), were frequently used in clinical treatment of ABD. However, the oral administration of ET had poor absorption (<1%). Therefore, optimization of a suitable dosage form substituted with ET to locally repair the ABD was a straightforward approach. Polylactide-co-glycolide (PLGA) is a biodegradable material and had been used in locally implanted medical devices. Therefore, an ET-PLGA microcapsule may help local delivery and prolong the activity of healing ABD. In this paper, a preparation method of ET-PLGA microcapsule was optimized by the single-factor investigation and response surface method. Subsequently, the rat ABD model was used to evaluate the enhancement effect of these microcapsules. Finally, the optimum parameters were determined as follows: 40% dichloromethane, 160 mg/mL PLGA, 10% internal aqua/oil phase, 4% PVA, and emulsifying for 10 min. These microcapsules were spherical in shape and fairly monodisperse in a particle size of 27,51 µm (PDI = 0.3), encapsulation rate 96.6%, and drug loading 4.58%. Compared with the ET groups, the total healing volume of ABD in ET-PLGA groups was significantly increased (P < 0.05). ET-PLGA microcapsules significantly enhanced the effect of ET on ABD. This study provided important technical support for the treatment of ABD with bisphosphonates by local administration. This paper has an exploratory significance for the development of water-soluble bioactive components with low bioavailability for ABD.

6.
Front Bioeng Biotechnol ; 9: 699610, 2021.
Article in English | MEDLINE | ID: mdl-34268300

ABSTRACT

In this study, a chemically synthetic polymer, benzo[1,2-b:4,5-b']difuran(BDF)-based donor-acceptor copolymer PBDFDTBO, was individually coated by amphiphilic poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-PCL) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(polyethylene glycol) (DSPE-PEG or PEG-DSPE), to form stably fluorescent nanoparticles in the near-infrared (NIR) window. The physicochemical properties of the synthesized nanoparticles were characterized and compared, including their size, surface charge, and morphology. In addition, in vitro studies were also performed using two pancreatic cancer cell lines, assessing the cell viability of the PBDFDTBO-included PEGylated nanoparticles formulations. Moreover, in vivo studies were also conducted, using subcutaneous murine cancer models to investigate the polymeric nanoparticles' circulation time, tumor accumulation, and preferred organ biodistribution. The overall results demonstrated that even with the same PEGylated surface, the hydrophobic composition anchored on the encapsulated PBDFDTBO core strongly affected the biodistribution and tumor accumulation of the nanoparticles, to a degree possibly determined by the hydrophobic interactions between the hydrophobic segment of amphiphilic polymers (DSPE or PCL moiety) and the enwrapped PBDFDTBO. Both PEGylated nanoparticles were compared to obtain an optimized coating strategy for a desired biological feature in pancreatic cancer delivery.

7.
J Med Virol ; 93(8): 5126-5133, 2021 08.
Article in English | MEDLINE | ID: mdl-33595122

ABSTRACT

In this study, using a viral metagenomic method, we investigated the composition of virome in blood and cancer tissue samples that were collected from 25 patients with lung adenocarcinoma. Results indicated that virus sequences showing similarity to human pegivirus (HPgV), anellovirus, human endogenous retrovirus (HERV), and polyomavirus were recovered from this cohort. Three different complete genomes of HPgV were acquired from the blood samples and one complete genome of polyomavirus was determined from the cancer tissue sample. Phylogenetic analysis indicated that the three HPgV strains belonged to genotype 3 and the polyomavirus showed the highest sequence identity (99.73%) to trichodysplasia spinulosa-associated polyomavirus. PCR screening results indicated that the three HPgVs were present in 5 out of the 25 blood samples and the polyomavirus only existed in a cancer tissue sample pool. Whether infections with viruses have an association with lung cancer needs further study with a larger size of sampling.


Subject(s)
Adenocarcinoma of Lung/virology , Lung Neoplasms/virology , Virome/genetics , Adenocarcinoma of Lung/blood , Adenocarcinoma of Lung/pathology , Genome, Viral/genetics , Genotype , Humans , Lung Neoplasms/blood , Lung Neoplasms/pathology , Metagenomics , Pegivirus/classification , Pegivirus/genetics , Pegivirus/isolation & purification , Phylogeny , Polyomavirus/classification , Polyomavirus/genetics , Polyomavirus/isolation & purification
8.
Exp Ther Med ; 20(5): 2, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32934667

ABSTRACT

The present study aimed to investigate the role of microRNA (miR)-15a-5p in the pathogenesis of acute lung injury induced by traumatic hemorrhagic shock (THS), and to explore the underlying molecular mechanism. The expression level of miR-15a-5p was detected using reverse transcription-quantitative (RT-qPCR) and the association between miR-15a-5p and TNFAIP3-interacting protein 2 (TNIP2) was revealed using TargetScan and dual luciferase reporter assays. To investigate the effect of miR-15a-5p on THS-induced acute lung injury, a THS rat model was established. Lung capillary permeability and lung edema were then determined. Moreover, proinflammatory factors in the bronchoalveolar lavage fluid (BALF) and serum of the THS rat model were detected using ELISA. In addition, protein levels in the current study were measured via western blotting. It was revealed that miR-15a-5p was significantly upregulated in both patients with THS and samples from the THS rat model. TNIP2 represents a direct target of miR-15a-5p, and it was downregulated in both patients with THS and the THS rat model. Further analyses indicated that downregulation of miR-15a-5p significantly relieved acute lung injury induced by THS, evidenced by a decreased ratio of Evan's blue dye (EBD) in the BALF to EBD in plasma of THS rats, decreased lung permeability index and reduced lung wet/dry ratio. Inhibition of miR-15a-5p also decreased THS-induced upregulation of pro-inflammatory factors. Furthermore, the data revealed that THS-induced NF-κB activation in the lung tissues of rats was inhibited by miR-15a-5p knockdown. Moreover, it was demonstrated that all the effects of miR-15a-5p on THS rats were ablated following TNIP2 silencing. Taken together, the data of the current study indicate that miR-15a-5p downregulation serves a protective role in THS-induced acute lung injury via directly targeting TNIP2.

SELECTION OF CITATIONS
SEARCH DETAIL