Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Biol Interact ; 393: 110947, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38479716

ABSTRACT

In this study, twenty-nine coumarin-3-sulfonamide derivatives, twenty-seven of which are original were designed and synthesized. Cytotoxicity assay indicated that most of these derivatives exhibited moderated to good potency against A549 cells. Among them, compound 8q showed potent inhibition against the four tested cancer cell lines, especially A549 cells with IC50 value of 6.01 ± 0.81 µM, and much lower cytotoxicity on the normal cells was observed compared to the reference compounds. Bioinformatics analysis revealed human carbonic anhydrase IX (CAIX) was highly expressed in lung adenocarcinoma (LUAD) and associated with poor prognosis. The inhibitory activity of compound 8q against CAIX was assessed by using molecular docking and molecular dynamics simulations, which revealed prominent interactions of both compound 8q and CAIX at the active site and their high affinity. The results of ELISA assays verified that compound 8q possessed strong inhibitory activity against CAIX and high subtype selectivity, and could also down-regulate the expression of CAIX in A549 cells. Furthermore, the significant inhibitory effects of compound 8q on the migration and invasion of A549 cells were also found. After treatment with compound 8q, intracellular reactive oxygen species (ROS) levels increased and mitochondrial membrane potential (MMP) decreased. Mechanistic investigation using western blotting revealed compound 8q exerted the anti-migrative and anti-invasive effects probably through mitochondria-mediated PI3K/AKT pathway by targeting CAIX. In summary, coumarin-3-sulfonamide derivatives were developed as potential and effective CAIX inhibitors, which were worthy of further investigation.


Subject(s)
Carbonic Anhydrase Inhibitors , Coumarins , Humans , Carbonic Anhydrase IX , Molecular Docking Simulation , Coumarins/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Antigens, Neoplasm/metabolism , Sulfonamides/pharmacology , Structure-Activity Relationship , Molecular Structure
2.
Antioxid Redox Signal ; 40(1-3): 110-121, 2024 01.
Article in English | MEDLINE | ID: mdl-37950704

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter with significant physiological effects, including anti-inflammatory properties, regulation of oxidative stress, and vasodilation, thus regulating body functions. Functional therapy involves using treatments that target the underlying cause of a disease, rather than simply treating symptoms. Epigenetics refers to changes in gene expression that occur through modifications to DNA, to the proteins that package DNA, or to noncoding RNA mechanisms. Recent research advances suggest that H2S may play a role in epigenetic regulation by altering DNA methylation patterns and regulating histone deacetylases, enzymes that modify histone proteins, or modulating microRNA mechanisms. These critical findings suggest that H2S may be a promising molecule for functional therapy in various diseases where epigenetic modifications are dysregulated. We reviewed the relevant research progress in this area, hoping to provide new insights into the epigenetic mechanisms of H2S. Despite the challenges of clinical use of H2S, future research may lead to the progress of new therapeutic approaches. Antioxid. Redox Signal. 40, 110-121.


Subject(s)
Hydrogen Sulfide , MicroRNAs , Epigenesis, Genetic , Hydrogen Sulfide/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , DNA Methylation , DNA/metabolism
3.
MedComm (2020) ; 4(5): e338, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37600507

ABSTRACT

Aconitum carmichaelii (Fuzi) is a traditional Chinese medicine that has been widely used in the clinic to save the dying life for over several thousand years. However, the medicinal components of Fuzi in treating vascular senescence (VS) and its potential mechanism remain unclear. In this study, a network pharmacology method was used to explore the possible components and further validated by experiments to get a candidate compound, deoxyandrographolide (DA). DA restrains aging biomarkers, such as p16, p21, γH2A.X, and p53 in vitro and in vivo blood co-culture studies. Histone deacetylase 1 (HDAC1), mouse double minute2 (MDM2), cyclin-dependent kinase 4, and mechanistic target of rapamycin kinase (mTOR) are predicted to be the possible targets of DA based on virtual screening. Subsequent bio-layer interferometry results indicated that DA showed good affinity capability with HDAC1. DA enhances the protein expression of HDAC1 in the angiotensin II-induced senescence process by inhibiting its ubiquitination degradation. Loss of HDAC1 by CRISPR/Cas9 leads to the disappearance of DA's anti-aging property. The enhancement of HDAC1 represses H3K4me3 (a biomarker of chromosomal activity) and improves chromosome stability. RNA sequencing results also confirmed our hypothesis. Our evidence illuminated that DA may achieve as a novel compound in the treatment of VS by improving chromosome stability.

4.
Front Pharmacol ; 14: 1141121, 2023.
Article in English | MEDLINE | ID: mdl-37033621

ABSTRACT

Coumarin derivatives have diverse structures and show various significant biological activities. Aiming to develop more potent coumarin derivatives for cancer treatment, a series of coumarin acrolein hybrids were designed and synthesized by using molecular hybridization approach, and investigated for their antiproliferative activity against A549, KB, Hela and MCF-7 cancer cells as well as HUVEC and LO2 human normal cells. The results indicated that most of the synthesized compounds displayed remarkable inhibitory activity towards cancer cells but low cytotoxicity on normal cells. Among all the compounds, 5d and 6e were the most promising compounds against different cancer cell lines, especially for A549 and KB cells. The preliminary action mechanism studies suggested that compound 6e, the representative compound, was capable of dose-dependently suppressing migration, invasion and inducing significant apoptosis. Furthermore, the combined results of network pharmacology and validation experiments revealed that compound 6e induced mitochondria dependent apoptosis via the PI3K/AKT-mediated Bcl-2 signaling pathway. In summary, our study indicated compound 6e could inhibit cell proliferation, migration, invasion and promote cell apoptosis through inhibition of PI3K/AKT signaling pathway in human oral epidermoid carcinoma cells. These findings demonstrated the potential of 3-(coumarin-3-yl)-acrolein derivatives as novel anticancer chemotherapeutic candidates, providing ideas for further development of drugs for clinical use.

5.
Signal Transduct Target Ther ; 8(1): 68, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36797236

ABSTRACT

Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.


Subject(s)
Arthritis, Rheumatoid , Quality of Life , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Risk Factors , Disease Progression
6.
Oxid Med Cell Longev ; 2022: 3087916, 2022.
Article in English | MEDLINE | ID: mdl-35814270

ABSTRACT

Aging is an inevitable consequence of life, and during this process, the epigenetic landscape changes and reactive oxygen species (ROS) accumulation increases. Inevitably, these changes are common in many age-related diseases, including neurodegeneration, hypertension, and cardiovascular diseases. In the current research, histone deacetylation 4 (HDAC4) was studied as a potential therapeutic target in vascular senescence. HDAC4 is a specific class II histone deacetylation protein that participates in epigenetic modifications and deacetylation of heat shock proteins and various transcription factors. There is increasing evidence to support that HDAC4 is a potential therapeutic target, and developments in the synthesis and testing of HDAC4 inhibitors are now gaining interest from academia and the pharmaceutical industry.


Subject(s)
Histone Deacetylases , Hypertension , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Histones/metabolism , Humans , Protein Processing, Post-Translational , Repressor Proteins/metabolism
8.
Biomed Pharmacother ; 150: 112957, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35462330

ABSTRACT

Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Indoles/metabolism , Indoles/pharmacology , Indoles/therapeutic use , Liver , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/drug therapy , Obesity/metabolism
9.
Chem Commun (Camb) ; 57(79): 10174-10177, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34528644

ABSTRACT

Carboxyboranylamino ethanol (Me2N(BH2CO2H)CH2CH2OH, 1) was prepared in 75.0% yield by an amine-exchange reaction. Compound 1 shows lower cytotoxicity and higher anti-tumor efficacy in vitro towards the SCCVII cell line in comparison with 4-borono-L-phenylalanine (BPA) and methyl 2-hydroxyl-5-(1'-ortho-carbonylmethyl-1',2',3'-triazol-4'-yl)-benzonate (2). The bio-enhancement is interpreted using molecular docking calculations.


Subject(s)
Amino Alcohols/pharmacology , Antineoplastic Agents/pharmacology , Boron Compounds/pharmacology , Boron Neutron Capture Therapy , Carcinoma, Squamous Cell/drug therapy , Drug Discovery , Amino Alcohols/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Boron Compounds/chemistry , Cell Line, Tumor , Mice , Molecular Docking Simulation
11.
Molecules ; 25(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066470

ABSTRACT

In comparison with pristine sinomenine and carborane precursors, the calculations of molecular docking with matrix metalloproteinases (MMPs) and methylcarboranyl-n-butyl sinomenine showed improved interactions. Accordingly, methylcarboranyl-n-butyl sinomenine shows a high potential in the treatment of rheumatoid arthritis (RA) in the presence of slow neutrons. The reaction of potassium salt of sinomenie, which is generated from the deprotonation of sinomenine (1) using potassium carbonate in a solvent of N,N-dimethyl formamide, with 4-methylcarboranyl-n-butyl iodide, (2) forms methylcarboranyl-n-butyl sinomenine (3) in 54.3% yield as a new product. This new compound was characterized by 1H, 13C, and 11B NMR spectroscopy, FT-IR spectroscopy, and elemental analyses to confirm its molecular composition. In addition to molecular docking interactions with MMPs, the in vitro killing effects of 3, along with its toxicity measurements, exhibited its potential to be the new drug delivery agent for boron neutron capture synovectomy (BNCS) and boron neutron capture therapy (BNCT) for the treatment of rheumatoid arthritis (RA) and cancers in the presence of slow neutrons, respectively.


Subject(s)
Antineoplastic Agents/chemistry , Antirheumatic Agents/chemistry , Antirheumatic Agents/pharmacology , Boron Neutron Capture Therapy/methods , Morphinans/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antirheumatic Agents/chemical synthesis , Boron/pharmacokinetics , Cell Line, Tumor , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Magnetic Resonance Spectroscopy , Matrix Metalloproteinase 1/chemistry , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 13/chemistry , Matrix Metalloproteinase 13/metabolism , Molecular Docking Simulation , Rats , Spectroscopy, Fourier Transform Infrared , Synoviocytes/drug effects
12.
Chem Cent J ; 12(1): 136, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30564982

ABSTRACT

A facile and efficient palladium-catalyzed borylation of aryl (pseudo)halides at room temperature has been developed. Arylboronic esters were expeditiously assembled in good yields and with a broad substrate scope and good functional group compatibility. This approach has been successfully applied to the one-pot two-step borylation/Suzuki-Miyaura cross-coupling reaction, providing a concise access to biaryl compounds from readily available aryl halides. Furthermore, a parallel synthesis of biaryl analogs is accomplished at room temperature using the strategy, which enhances the practical usefulness of this method.

13.
RSC Adv ; 8(25): 13643-13648, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-35539348

ABSTRACT

A highly efficient room-temperature borylation strategy of aryl chlorides is described. Utilizing Buchwald's second-generation preformed catalyst, boronate esters were obtained for a wide range of substrates in high yield. The method was also applied to Suzuki-Miyaura cross-coupling reaction in a one-pot two-step sequential manner, providing a facile and convenient access to the direct synthesis of biaryl compounds from aryl chlorides.

SELECTION OF CITATIONS
SEARCH DETAIL
...