Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Nutr Neurosci ; 19(7): 318-26, 2016 Sep.
Article in English | MEDLINE | ID: mdl-24856006

ABSTRACT

OBJECTIVES: Since oils and fats can induce metabolic syndrome, leading to cardiovascular and cerebrovascular diseases, the present study was performed to find out whether the plant oils affect the cerebral hemorrhage in stroke-prone spontaneously hypertensive (SHR-SP) rats. METHODS: From 47 days of age, male SHR-SP rats were given drinking water containing 1% NaCl to induce hypertension, and simultaneously fed semi-purified diets containing 10% perilla oil, canola oil, or shortening. The onset time of convulsion following cerebral hemorrhage was recorded, and the areas of hemorrhage and infarction were analyzed in the stroke brains. RESULTS: In comparison with 58-day survival of SHR-SP rats during feeding NaCl alone, perilla oil extended the survival time to 68.5 days, whereas canola oil shortened it to 45.7 days. Feeding perilla oil greatly reduced the total volume of cerebral hemorrhage from 17.27% in the control group to 4.53%, while shortening increased the lesions to 21.23%. In a microscopic analysis, perilla oil also markedly decreased the hemorrhagic and infarction lesions to 1/10 of those in control rats, in contrast to an exacerbating effect of shortening. In blood analyses, perilla oil reduced blood total cholesterol and low-density lipoproteins which were increased in SHR-SP, but canola oil further increased them and markedly lowered platelet counts. DISCUSSION: Perilla oil delayed and attenuated cerebral hemorrhage by improving hyperlipidemia in hypertensive stroke animals, in contrast to the aggravating potential of canola oil and shortening. It is suggested that perilla oil should be the first choice oil for improving metabolic syndrome in hypertensive persons at risk of hemorrhagic stroke.


Subject(s)
Cerebral Hemorrhage/prevention & control , Dietary Fats, Unsaturated/therapeutic use , Hyperlipidemias/diet therapy , Hypertension/diet therapy , Plant Oils/therapeutic use , Stroke/prevention & control , alpha-Linolenic Acid/therapeutic use , Animals , Brain/pathology , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/pathology , Dietary Fats/adverse effects , Dietary Fats, Unsaturated/adverse effects , Fatty Acids, Omega-3/adverse effects , Fatty Acids, Omega-3/therapeutic use , Hyperlipidemias/blood , Hyperlipidemias/etiology , Hyperlipidemias/physiopathology , Hypertension/blood , Hypertension/etiology , Hypertension/physiopathology , Kidney/pathology , Male , Metabolic Syndrome/blood , Metabolic Syndrome/diet therapy , Metabolic Syndrome/etiology , Metabolic Syndrome/physiopathology , Neurons/pathology , Plant Oils/adverse effects , Platelet Count , Random Allocation , Rapeseed Oil , Rats, Inbred SHR , Rats, Inbred WKY , Sodium Chloride, Dietary/adverse effects , Stroke/blood , Stroke/etiology , Stroke/pathology , Survival Analysis , Thrombocytopenia/etiology , alpha-Linolenic Acid/adverse effects
4.
Lab Anim Res ; 30(2): 84-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24999363

ABSTRACT

The effects of an ethanolic extract of Angelica gigas (EAG) on the vascular smooth muscle cell (VSMC) proliferation and high-cholesterol diet-induced hypercholesterolemia and atherosclerosis were investigated. Rat aortic VSMCs were stimulated with platelet-derived growth factor-BB (25 ng/mL) for the induction of DNA synthesis and cell proliferation. EAG (1-10 µg/mL) significantly inhibited both the thymidine incorporation and cell proliferation in a concentration-dependent manner. Hypercholesterolemia was induced by feeding male New Zealand white rabbits with 0.5% cholesterol in diet for 10 weeks, during which EAG (1% in diet) was given for the final 8 weeks after 2-week induction of hypercholesterolemia. Hypercholesterolemic rabbits exhibited great increases in serum total cholesterol and low-density lipoproteins (LDL) levels, and finally severe atheromatous plaque formation covering 28.4% of the arterial walls. EAG significantly increased high-density lipoproteins (HDL), slightly decreased LDL, and potentially reduced the atheroma area to 16.6%. The results indicate that EAG attenuates atherosclerosis not only by inhibiting VASC proliferation, but also by increasing blood HDL levels. Therefore, it is suggested that EAG could be an alternative or an adjunct therapy for the improvement of hypercholesterolemia and atherosclerosis.

5.
Lab Anim Res ; 30(1): 28-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24707302

ABSTRACT

Effects of FEMY-R7, composed of fucoidan and evening primrose extract, on the bacterial growth and intragastric infection of Helicobacter pylori as well as gastric secretion were investigated in comparison with a proton-pump inhibitor pantoprazole. For in vitro anti-bacterial activity test, H. pylori (1×10(8) CFU/mL) was incubated with a serially-diluted FEMY-R7 for 3 days. As a result, FEMY-R7 fully inhibited the bacterial growth at 100 µg/mL, which was determined to be a minimal inhibitory concentration. In addition, 6-hour incubation with H. pylori, FEMY-R7 inhibited urease activity in a concentration-dependent manner, showing a median inhibitory concentration of 1,500 µg/mL. In vivo elimination study, male C57BL/6 mice were infected with the bacteria by intragastric inoculation (5×10(9) CFU/mouse) 3 times at 2-day intervals, and simultaneously, orally treated twice a day with 10, 30 or 100 mg/kg FEMY-R7 for 7 days. In Campylobcter-like organism-detection test and bacterial identification, FEMY-R7 exerted a high bacteria-eliminating capacity at 30-100 mg/kg, comparably to 30 mg/kg pantoprazole. In contrast to a strong antacid activity of pantoprazole in a pylorus-ligation study, FEMY-R7 did not significantly affect gastric pH, free HCl, and total acidity, although it significantly decreased fluid volume at a low dose (10 mg/kg). The results indicate that FEMY-R7 eliminate H. pylori from gastric mucosa by directly killing the bacteria and preventing their adhesion and invasion, rather than by inhibiting gastric secretion or mucosal damage.

6.
Lab Anim Res ; 30(1): 21-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24707301

ABSTRACT

The inhibitory effects of perilla oil on the platelet aggregation in vitro and thrombosis in vivo were investigated in comparison with aspirin, a well-known blood flow enhancer. Rabbit platelet-rich plasma was incubated with perilla oil and aggregation inducers collagen or thrombin, and the platelet aggregation rate was analyzed. Perilla oil significantly inhibited both the collagen- and thrombin-induced platelet aggregations, in which the thromboxane B2 formation from collagen-activated platelets were reduced in a concentration-dependent manner. Rats were administered once daily by gavage with perilla oil for 1 week, carotid arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Perilla oil delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 0.5 mL/kg. In addition, a high dose (2 mL/kg) of perilla oil greatly prevented the occlusion, comparable to the effect of aspirin (30 mg/kg). The results indicate that perilla oil inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is proposed that perilla oil could be a good candidate without adverse effects for the improvement of blood flow.

7.
Lab Anim Res ; 29(3): 178-81, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24106514

ABSTRACT

The effects of a ß-dunnione compound MB12662 on the gastric secretion and ulcers were investigated in rats. In order to assess the effects of MB12662 on the gastric secretion and acidity, rats were subjected to pylorus ligation operation, and 6 hours later, gastric fluid was collected. Treatment with MB12662 reduced the gastric fluid volume to 47.3% of control level and increased pH. In an alcohol-induced ulcer model, rats were orally administered 3 mL/kg of ethanol, and 1 hour later, the ulcer lesions ware measured under a stereomicroscope. MB12662 reduced ulcer index in a dose-dependent manner which was much stronger than a proton-pump inhibitor pantoprazole. In a stress-induced ulcer model, rats were subjected to water-immersion restraint stress, and 5 hours later, the ulcer lesions ware examined. MB12662 also attenuated the stress-induced gastric lesions, although the efficacy of MB12662 was lower than that of pantoprazole. Therefore, it is suggested that MB12662 could be a candidate compound for the prevention or treatment of gastric ulcers induced by gastric over-secretion and alcoholic hangover.

8.
Lab Anim Res ; 29(1): 7-11, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23573102

ABSTRACT

According to a high anti-osteoporotic efficacy of Sigma Anti-bonding Molecule Calcium Carbonate (SAC), repeated-dose toxicities of SAC were investigated to assess its feasibility as drug or functional food ingredient. Male ICR mice were given drinking water containing 0.006, 0.02 or 0.06% SAC for 4 weeks. SAC feeding decreased the body weights and feed and water consumptions of mice in a dose-dependent manner, especially, leading to severe emaciation and 70% death in 3 weeks in the high-dose (0.06%) group. Not only kidney and heart weights, but also the levels of blood urea nitrogen, creatinine, aspartate transaminase, and creatine phospokinase significantly increased after SAC administration, indicative of nephrotoxicity and cardiotoxicity. Such renal and cardiac toxicities were also confirmed by microscopic findings, exhibiting renal crystals and cardiac fibrosis, which may be due to the insoluble crystal formation and calcium overload, respectively. In conclusion, it is suggested that no observed adverse effect level of SAC is lower than 0.006% in mice, and that a long-term intake may cause serious adverse effects on renal and cardiac functions.

9.
Lab Anim Res ; 29(4): 221-5, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24396387

ABSTRACT

The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...