Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Methods ; 19(1): 21, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36869350

ABSTRACT

BACKGROUND: Various growth systems are available for studying plant root growth and plant-microbe interactions including hydroponics and aeroponics. Although some of these systems work well with Arabidopsis thaliana and smaller cereal model plants, they may not scale up as well for use with hundreds of plants at a time from a larger plant species. The aim of this study is to present step-by-step instructions for fabricating an aeroponic system, also called a "caisson," that has been in use in several legume research labs studying the development of symbiotic nitrogen fixing nodules, but for which detailed directions are not currently available. The aeroponic system is reusable and is adaptable for many other types of investigations besides root nodulation. RESULTS: An aeroponic system that is affordable and reusable was adapted from a design invented by French engineer René Odorico. It consists of two main components: a modified trash can with a lid of holes and a commercially available industrial humidifier that is waterproofed with silicon sealant. The humidifier generates a mist in which plant roots grow, suspended from holes in trash can lid. Results from use of the aeroponic system have been available in the scientific community for decades; it has a record as a workhorse in the lab. CONCLUSIONS: Aeroponic systems present a convenient way for researchers to grow plants for studying root systems and plant-microbe interactions in root systems. They are particularly attractive for phenotyping roots and following the progress of nodule development in legumes. Advantages include the ability to precisely control the growth medium in which the plants grow and easy observations of roots during growth. In this system, mechanical shear potentially killing microbes found in some other types of aeroponic devices is not an issue. Disadvantages of aeroponic systems include the likelihood of altered root physiology compared to root growth on soil and other solid substrates and the need to have separate aeroponic systems for comparing plant responses to different microbial strains.

3.
Front Plant Sci ; 14: 1306491, 2023.
Article in English | MEDLINE | ID: mdl-38239208

ABSTRACT

The model legume Medicago truncatula establishes a symbiosis with soil bacteria (rhizobia) that carry out symbiotic nitrogen fixation (SNF) in plant root nodules. SNF requires the exchange of nutrients between the plant and rhizobia in the nodule that occurs across a plant-derived symbiosome membrane. One iron transporter, belonging to the Vacuolar iron Transporter-Like (VTL) family, MtVTL8, has been identified as essential for bacteria survival and therefore SNF. In this work we investigated the spatial expression of MtVTL8 in nodules and addressed whether it could be functionally interchangeable with a similar nodule-expressed iron transporter, MtVTL4. Using a structural model for MtVTL8 and the previously hypothesized mechanism for iron transport in a phylogenetically-related Vacuolar Iron Transporter (VIT), EgVIT1 with known crystal structure, we identified critical amino acids and obtained their mutants. Mutants were tested in planta for complementation of an SNF defective line and in an iron sensitive mutant yeast strain. An extended phylogenetic assessment of VTLs and VITs showed that amino acids critical for function are conserved differently in VTLs vs. VITs. Our studies showed that some amino acids are essential for iron transport leading us to suggest a model for MtVTL8 function, one that is different for other iron transporters (VITs) studied so far. This study extends the understanding of iron transport mechanisms in VTLs as well as those used in SNF.

4.
Front Immunol ; 13: 882217, 2022.
Article in English | MEDLINE | ID: mdl-35572564

ABSTRACT

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with low survival time. Since the pathophysiological progression of IPF is closely associated with immunological and inflammatory responses, immune biomarkers, including neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and monocyte-high density lipoprotein ratio (MHR), have the potential to predict overall survival in IPF patients. Methods: A total of 278 patients with IPF were finally enrolled. The demographic and clinical characteristics of the patients at baseline were recorded. Multivariable Cox regression analysis was used to evaluate the association between the three biomarkers and overall survival in both the total cohort and acute exacerbation subgroup. Results: The median follow-up was 5.84 months. After adjusting for confounders, we found that only elevated NLR was associated with worse overall survival (OR = 1.019, 95% CI 1.001-1.037, P =0.041) by using multivariable Cox regression analysis. In 116 acute exacerbation IPF patients, the results of the Cox multiple regression model also indicated that the NLR was a significant prognostic factor (OR= 1.022, 95% CI 1.001-1.044, P =0.036). The NLR before death was also significantly higher than that at admission in nonsurvival acute exacerbation IPF patients (P=0.014). No significant differences were found in PLR (P=0.739) or MHR changes (P=0.478). Conclusions: Our results indicated that elevated NLR expression is associated with shorter overall survival in IPF patients, which is independent of other prognostic factors. The NLR may be regarded as a reliable prognostic biomarker for IPF patients.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Biomarkers , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Lymphocytes , Neutrophils , Prognosis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...