Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Environ Health Res ; : 1-15, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722165

ABSTRACT

The effects of endocrine disruptors including phenols and phthalates on adult lung function remain unclear. In the present study, data from 2007-2012 National Health and Nutrition Examination Survey (NHANES) were extracted, and 4338 participants were included in the final analyses. The associations of three phenols and four phthalate metabolites with six lung function parameters were investigated. In generalized linear regression models (GLM) and restricted cubic spline (RCS) analyses, bisphenol A (BPA) was associated with decreased forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC), and 2,5-dichlorophenol (DCP) was associated with reduced FEV1, FVC and peak expiratory flow rate (PEF), and increased prevalence of restrictive lung function (RLF) in adults. Furthermore, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models demonstrated that mixed exposures to phenols and phthalates were linked to reduced FEV1, FVC and PEF and increased prevalence of RLF, and these associations were mainly driven by BPA and 2,5-DCP. In conclusion, mixed exposure to phenols and phthalates was linked to compromised and a restrictive pattern of lung function. The mechanisms of the effects of phenol and phthalate exposures on lung function and respiratory diseases need to be further investigated.

2.
Bioresour Technol ; 399: 130619, 2024 May.
Article in English | MEDLINE | ID: mdl-38552857

ABSTRACT

Mineral processing encounters the challenge of separating chalcopyrite and pyrite, with the conventional high alkali process characterized by issues such as large dosages of reagents, complex procedures, and environmental pollution. This study addresses this challenge by isolating and enriching Thiobacillus ferrooxidans (T·f) from acidic mine drainage, employing it as a biosurfactant. The modification mechanism of T·f was thoroughly analyzed. Fe dissolution through biological oxidation formed a passivation layer (jarosite [KFe3(SO4)2(OH)6], elemental sulfur (S0), and metal sulfides (Cu/Fe-S) on the surface of minerals. Metal oxides, hydroxides, and sulfates were detected on the surface of two minerals, but the difference was that elemental sulfur (S0) and copper sulfide (Cu-S) were detected on the surface of chalcopyrite. elucidating the fundamental reason for the significant difference in surface hydrophobicity between chalcopyrite and pyrite. T·f has been successfully used as a biosurfactant to achieve copper-sulfur separation.


Subject(s)
Acidithiobacillus , Copper , Iron , Thiobacillus , Minerals , Sulfides , Sulfur
3.
Molecules ; 28(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37959794

ABSTRACT

Enhanced sulfurization has always been the focus of research on the flotation of copper oxide minerals. In this study, combined ammonium-amine salts were innovatively applied to improve the sulfurization of azurite. Flotation tests were carried out to evaluate the promoting effect of ammonium-amine co-activation on the sulfurization-xanthate flotation of azurite, and the microstructure evolution of sulfurized products was investigated to reveal the mechanism underlying this promoting effect. Compared with single ammonium (amine) salt activation, ammonium-amine co-activation improved the floatability of azurite to a greater extent, i.e., the flotation recovery increased by over 4 percentage points. ToF-SIMS, ICP-OES, FESEM-EDS, AFM, XRD, and UV-vis analyses indicated that ammonium-amine co-activation combined the advantages of inorganic ammonium for buffering pH and organic amine for copper ion complexation, thus promoting the growth of sulfurized crystal products (covellite) and enhancing the adhesion stability of sulfurized products on azurite. Therefore, increasing amounts of copper sulfide components were generated under the ammonium-amine-Na2S system, promoting the adsorption of additional xanthate on azurite. This study provides theoretical support for the application of combined ammonium-amine salts for the sulfurization flotation of copper oxide.

4.
Nutr Rev ; 2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37634143

ABSTRACT

Intermittent fasting (IF), one of the most popular diets, can regulate inflammation and promote health; however, the detailed molecular mechanisms are not fully understood. The present review aims to provide an overview of recent preclinical and clinical studies that have examined the effect of IF on inflammasome signaling, and to discuss the translational gap between preclinical and clinical studies. Three databases (PubMed, Web of Science, and Embase) were searched to identify all relevant preclinical and clinical studies up to October 30, 2022. A total of 1544 studies were identified through the database searches, and 29 preclinical and 10 clinical studies were included. Twenty-three of the 29 preclinical studies reported that IF treatment could reduce inflammasome activation in neurological diseases, metabolic and cardiovascular diseases, immune and inflammatory diseases, gastrointestinal diseases, and pulmonary diseases, and 7 of the 10 clinical studies demonstrated reduced inflammasome activation after IF intervention in both healthy and obese participants. Among various IF regimens, time-restricted eating seemed to be the most effective one in terms of inflammasome regulation, and the efficacy of IF might increase over time. This review highlights the regulatory effect of IF on inflammasome activation in health and disease. Future studies using different IF regimens, in various populations, are needed in order to evaluate its potential to be used alone or as an adjunct therapy in humans to improve health and counteract diseases.

5.
Bioengineering (Basel) ; 10(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37370664

ABSTRACT

In recent years, with pressing needs such as diabetes management, the detection of glucose in various substrates has attracted unprecedented interest from researchers in academia and industry. As a relatively new glucose sensor, non-enzymatic target detection has the characteristics of high sensitivity, good stability and simple manufacturing process. However, it is urgent to explore novel materials with low cost, high stability and excellent performance to modify electrodes. Metal-organic frameworks (MOFs) and their composites have the advantages of large surface area, high porosity and high catalytic efficiency, which can be utilized as excellent materials for electrode modification of non-enzymatic electrochemical glucose sensors. However, MOFs and their composites still face various challenges and difficulties that limit their further commercialization. This review introduces the applications and the challenges of MOFs and their composites in non-enzymatic electrochemical glucose sensors. Finally, an outlook on the development of MOFs and their composites is also presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...