Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 41(8): 3836-3845, 2020 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-33124361

ABSTRACT

Drip irrigation and biochar amendment could affect the nitrogen form and transformation. Creating a deep understanding of the interacting effects of drip irrigation patterns and biochar on soil mineral nitrogen, as well as the key functional genes and microbial community involved in nitrogen transformation is helpful for improving facility agricultural management, increasing water and nitrogen use efficiency, and reducing the nitrate accumulation and groundwater pollution caused by nitrogen leaching. Four treatments [surface drip irrigation (D), insert drip irrigation (ID, insert depth 15 cm), surface drip irrigation +10 t·hm-2 of biochar (DB), and insert drip irrigation +10 t·hm-2 of biochar (IDB)] were conducted in a solar greenhouse, and non-rhizospheric and rhizospheric soils of pepper plants were studied. There was no effect of drip irrigation patterns and biochar on ammonium-nitrogen in the non-rhizospheric and rhizospheric soils. Compared with surface drip irrigation, insert drip irrigation decreased the nitrate-nitrogen concentration in the non-rhizosphere soil (P<0.05), but biochar addition weakened the difference. Biochar addition decreased the nitrate-nitrogen concentration in the rhizosphere soil under the same drip irrigation patterns. In the D treatment, biochar significantly decreased the number of copies of AOA, AOB, and nirK genes in the non-rhizospheric soil, and AOA gene copies in the rhizospheric soil (P<0.05); however, there was an increase in the number of copies of AOB and nirK genes in the rhizospheric soil of the D and ID treatments (P<0.05). Based on the structural equation model (SEM), in the non-rhizospheric and rhizospheric soils, pH and electrical conductivity were the environmental factors with the greatest influence on the ammonium-nitrogen and nitrate concentrations, respectively, and the gene copy number of AOB was the biotic factor with the greatest influence on the nitrate-nitrogen concentration. Based on PICRUSt, the γ-Proteobacteria contributed mostly to ammonia monooxygenase gene (K10945) expression, whereas the α-Proteobacteria, especially the rhizobia members, contributed mostly to nitrite reductase gene (K00368) expression. Biochar addition regulated the bacterial community structure that participated in K10945 gene expression in the non-rhizospheric soil and K00368 gene expression in the rhizospheric soil (P<0.05). Overall, biochar addition contributed more to nitrate-nitrogen and microbial mineral nitrogen-transformation processes in the agricultural soil than did the drip irrigation patterns.


Subject(s)
Nitrogen , Soil , Agricultural Irrigation , Charcoal , Minerals , Soil Microbiology
2.
Ying Yong Sheng Tai Xue Bao ; 24(9): 2525-32, 2013 Sep.
Article in Chinese | MEDLINE | ID: mdl-24417110

ABSTRACT

A field experiment with three irrigation amounts and five nitrogen application levels was conducted to investigate the effects of water and nitrogen regulation on the growth characteristics, yield component factors, and water and nitrogen use efficiency of cotton in south Xinjiang under mulched drip irrigation. With the increasing amount of irrigation, the plant height, leaf number on main stem, boll number, LAI, and dry matter accumulation in leaf and stem improved significantly, but the root growth was restrained. As compared with low and high irrigation amounts (4950 and 6750 mm x hm(-2), respectively), medium irrigation amount (5850 mm x hm(-2)) increased the available bolls per plant and the single boll mass averagely by 0.96 and 0.4 and by 0.22 and 0.11 g, respectively. When the nitrogen application level was 300 kg x hm(-2), as compared with other nitrogen application levels, the stem diameter increased significantly, and the growth of bud, boll, and root was accelerated. Moreover, the allocation ratio of dry matter from nutritional organs to reproductive organs under medium irrigation amount increased by 5.1% and 29.6% respectively, as compared with that under low and high irrigation amounts. Irrigation amount had significant effects on the cotton yield but little effects on the lint percentage, whereas nitrogen application level had definite effects on the cotton yield and lint percentage. However, low irrigation amount restrained the effects of nitrogen application on yield enhancement. In this experiment, when the irrigation amount was 5850 mm x hm(-2) and the nitrogen application level was 300 kg x hm(-2), the cotton grew healthily, the plant shape structure was optimized, the dry matter allocation to reproductive organs was promoted dramatically, the available bolls, single boll mass, and lint percentage increased, the cotton yield reached the highest (6992.33 kg x hm(-2)), and the water and nitrogen use efficiency amounted to 1.45 kg x m(-3) and 45.9%, respectively.


Subject(s)
Agricultural Irrigation/methods , Biomass , Gossypium/growth & development , Nitrogen/metabolism , Water/metabolism , China , Gossypium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...