Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 24(1): 573, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724951

ABSTRACT

BACKGROUND: Microsatellite instability-high (MSI-H) has emerged as a significant biological characteristic of colorectal cancer (CRC). Studies reported that MSI-H CRC generally had a better prognosis than microsatellite stable (MSS)/microsatellite instability-low (MSI-L) CRC, but some MSI-H CRC patients exhibited distinctive molecular characteristics and experienced a less favorable prognosis. In this study, our objective was to explore the metabolic transcript-related subtypes of MSI-H CRC and identify a biomarker for predicting survival outcomes. METHODS: Single-cell RNA sequencing (scRNA-seq) data of MSI-H CRC patients were obtained from the Gene Expression Omnibus (GEO) database. By utilizing the copy number variation (CNV) score, a malignant cell subpopulation was identified at the single-cell level. The metabolic landscape of various cell types was examined using metabolic pathway gene sets. Subsequently, functional experiments were conducted to investigate the biological significance of the hub gene in MSI-H CRC. Finally, the predictive potential of the hub gene was assessed using a nomogram. RESULTS: This study revealed a malignant tumor cell subpopulation from the single-cell RNA sequencing (scRNA-seq) data. MSI-H CRC was clustered into two subtypes based on the expression profiles of metabolism-related genes, and ENO2 was identified as a hub gene. Functional experiments with ENO2 knockdown and overexpression demonstrated its role in promoting CRC cell migration, invasion, glycolysis, and epithelial-mesenchymal transition (EMT) in vitro. High expression of ENO2 in MSI-H CRC patients was associated with worse clinical outcomes, including increased tumor invasion depth (p = 0.007) and greater likelihood of perineural invasion (p = 0.015). Furthermore, the nomogram and calibration curves based on ENO2 showed potential prognosis predictive performance. CONCLUSION: Our findings suggest that ENO2 serves as a novel prognostic biomarker and is associated with the progression of MSI-H CRC.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Disease Progression , Microsatellite Instability , Phosphopyruvate Hydratase , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Prognosis , Female , Male , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Middle Aged , Nomograms , Single-Cell Analysis , DNA Copy Number Variations
2.
ACS Appl Mater Interfaces ; 15(26): 31849-31866, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37345864

ABSTRACT

Herein, we explore the potential of innovative manufacturing techniques based on green chemistry principles, for the fabrication of convenient, performant, and stable supported photocatalysts to be used for water depollution. After giving some insight into the use of fractal geometry for the fabrication of tunable polymer supports for photocatalysts, we investigated the use of liquid crystal display (LCD) 3D printing to generate the fractal resin substrates to be used for the immobilization of semiconductor photocatalysts. Notably, confocal laser imaging was used as a first attempt for assessing the surface area of the fractal substrate. Immobilization methods based on cold plasma discharge (CPD) were employed to modify the surface of the polymer substrates and permanently anchor three different phases, namely, nickel-based metal-organic framework (Ni-MOF), BiOI, and AgVO3, in a hierarchical configuration. Herein, for the first time, we developed a plasma-initiated condensed in situ complexation-assisted precipitation (c-ISCAP) method that allowed 2D Ni-MOF to be synthesized directly onto the surface of a polymer substrate, in a single step. Not only this MOF coating was found to be strongly bound to the surface of the polymer substrate but also very uniform and fully functional, even when other inorganic phases were immobilized on the top of this layer. This chemical approach opens the way for the fabrication of hybrid materials with complex polymer substrates and MOF coatings that could be used in a range of possible applications, for instance as chemical sensors, electrodes, adsorbents, optical devices, etc. Our hybrid photocatalysts were tested via photodegradation of Rhodamine B (RhB) dye upon visible light activation, with recycling runs to assess their durability. It was found that the hierarchical heterojunction Ni-MOF/BiOI/AgVO3 showed an outstanding ability for the removal of RhB dye, owing to the activity of the Ni-MOF layer in terms of charge transfer, and also partly because of its adsorbing potential. The three photoactive phases demonstrated a strong synergistic effect through coupling. However, more importantly, our findings show that their immobilization itself, regardless of the method used, significantly modified their optoelectronic properties, hence most likely changing the overall mechanism of charge transfer in the heterojunction. The Ni-MOF phase, notably, was found to display a reduced bandgap when obtained by c-ISCAP, which contributed to enhance its activation by visible light irradiation. Finally, it was established that the fractal geometry had a significant impact on the efficiency of the supported catalysts, probably thanks to an increased immobilization ratio of photocatalyst mostly, owing to the larger surface area available.

3.
Microbiol Immunol ; 67(6): 303-313, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36932814

ABSTRACT

Human cytomegalovirus (HCMV) infection of monocytes results in the production of inflammatory cytokine through inflammasome. However, the mechanism of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in HCMV infection remains unclear. In this study, HCMV infection promoted the increase of mitochondrial fusion and caused mitochondrial dysfunction in THP-1 cells, including excessive reactive oxygen species production and decreased mitochondrial membrane potential (Δψm). Meanwhile, the expression of mitochondrial DNA (mtDNA)-binding protein TFAM (transcription factor A, mitochondrial) was decreased and mtDNA content in the cytoplasm was increased. Knockdown of TFAM caused an increase in mtDNA copy number in the cytoplasm and resulted in elevated NLRP3 expression, active caspase-1, and mature IL-1ß. After a 3 h treatment with MCC950, an NLRP3 inhibitor, the increase of cleaved caspase-1 and mature IL-1ß were suppressed. Besides, overexpression of TFAM inhibited the expression of NLRP3, cleaved caspase-1, and mature IL-1ß. In addition, knockdown of NLRP3 inhibited the IL-1ß process after HCMV infection. mtDNA-deficient cells showed a limited ability to produce NLRP3 and process IL-1ß after HCMV infection. In conclusion, HCMV infection of THP-1 cells resulted in decreased mitochondrial TFAM protein expression and increased mtDNA release into the cytoplasm, which eventually led to the activation of NLRP3 inflammasome.


Subject(s)
Cytomegalovirus Infections , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Caspase 1/metabolism , Cytosol , DNA, Mitochondrial/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Reactive Oxygen Species/metabolism , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...