Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Stem Cells Dev ; 27(10): 683-691, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29598691

ABSTRACT

Hyperglycemia and other adverse exposures early in life that reprogram stem cells may lead to long-lasting phenotypic influences over the lifetime of an individual. Hyperglycemia and oxidative stress cause DNA damage when they exceed the protective capabilities of the cell, in turn affecting cellular function. DNA damage in response to hyperglycemia and oxidative stress was studied in human umbilical cord mesenchymal stem cells (hUC-MSCs) from large-for-gestational-age (LGA) infants of mothers with gestational diabetes mellitus (LGA-GDM) and control subjects. We tested the response of these cells to hyperglycemia and oxidative stress, measuring reactive oxygen species (ROS) levels and antioxidant enzyme activities. We find that hUC-MSCs from LGA-GDM infants have increased DNA damage when exposed to oxidative stress. With the addition of hyperglycemic conditions, these cells have an increase in ROS and a decrease in antioxidant glutathione peroxidase (GPx) activity, indicating a mechanism for the increased ROS and DNA damage. This study demonstrates that a memory of in utero hyperglycemia, mediated through downregulation of GPx activity, leads to an increased susceptibility to oxidative stress. The alteration of GPx function in self-renewing stem cells, can mediate the effect of intrauterine hyperglycemia to be propagated into adulthood and contribute to disease susceptibility.


Subject(s)
Antioxidants/metabolism , Hyperglycemia/pathology , Oxidative Stress/physiology , Uterus/pathology , Cells, Cultured , DNA Damage/physiology , Diabetes, Gestational/metabolism , Diabetes, Gestational/pathology , Female , Glutathione/metabolism , Humans , Hyperglycemia/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Oxidation-Reduction , Pregnancy , Reactive Oxygen Species/metabolism , Umbilical Cord/metabolism , Umbilical Cord/pathology , Uterus/metabolism
2.
ACS Appl Mater Interfaces ; 8(43): 29343-29355, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27739303

ABSTRACT

For cancer gene therapy, a safe and high-efficient gene carrier is a must. To resolve the contradiction between gene transfection efficiency and cytotoxicity, many polymers with complex topological structures have been synthesized, although their synthesis processes and structure control are difficult as well as the high molecular weight also bring high cytotoxicity. We proposed an alternative strategy that uses supramolecular inclusion to construct the aggregate from the small molecules for gene delivery, and to further explore the relationship between the topological assembly structure and their ability to deliver gene. Herein, PEI-1.8k-conjugating ß-CD through 6-hydroxyl (PEI-6-CD) and 2-hydroxyl (PEI-2-CD) have been synthesized respectively and then assembled with diferrocene (Fc)-ended polyethylene glycol (PEG-Fc). The obtained aggregates were then used to deliver MMP-9 shRNA plasmid for MCF-7 cancer therapy. It was found that the higher gene transfection efficiency can be obtained by selecting PEI-2-CD as the host and tuning the host/guest molar ratios. With the rational modulation of supramolecular architectures, the aggregate played the functions similar to macromolecules which exhibit higher transfection efficiency than PEI-25k, but show much lower cytotoxicity because of the nature of small/low molecules. In vitro and in vivo assays confirmed that the aggregate could deliver MMP-9 shRNA plasmid effectively into MCF-7 cells and then downregulate MMP-9 expression, which induced the significant MCF-7 cell apoptosis, as well inhibit MCF-7 tumor growth with low toxicity. The supramolecular aggregates maybe become a promising carrier for cancer gene therapy and also provided an alternative strategy for designing new gene carriers.


Subject(s)
Gene Transfer Techniques , Plasmids , Polyethylene Glycols , Polyethyleneimine , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...