Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 23(1): 376, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37098488

ABSTRACT

BACKGROUND: Cancers harboring spliceosome mutations are highly sensitive to additional perturbations on the spliceosome that leads to the development of onco-therapeutics targeting the spliceosome and opens novel opportunities for managing aggressive tumors lacking effective treatment options such as triple negative breast cancers. Being the core spliceosome associated proteins, SNRPD1 and SNRPE have been both proposed as therapeutic targets for breast cancer management. Yet, their differences regarding their prognostic and therapeutic use as well as roles during carcinogenesis are largely unreported. METHODS: We conducted in silico analysis at gene expression and genetic levels to differentiate the clinical relevance of SNRPD1 and SNRPE, and explored their differential functionalities and molecular mechanistic associations with cancer in vitro. RESULTS: We showed that high SNRPD1 gene expression was prognostic of poor breast cancer survival whereas SNRPE was not. The SNRPD1 expression quantitative trait loci, rs6733100, was found independently prognostic of breast cancer survival using TCGA data. Silencing either SNRPD1 or SNRPE independently suppressed the growth of breast cancer cells, but decreased migration was only observed in SNRPD1-silenced cells. Knocking down SNRPD1 but not SNRPE triggers doxorubicin resistance in triple negative breast cancer cells. Gene enrichment and network analyses revealed the dynamic regulatory role of SNRPD1 on cell cycle and genome stability, and the preventive role of SNRPE against cancer stemness that may neutralize its promotive role on cancer cell proliferation. CONCLUSION: Our results differentiated the functionalities of SNRPD1 and SNRPE at both prognostic and therapeutic levels, and preliminarily explained the driving mechanism that requires additional explorations and validations.


Subject(s)
Anthracyclines , Triple Negative Breast Neoplasms , Humans , Anthracyclines/pharmacology , Anthracyclines/therapeutic use , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Breast/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Prognosis , Treatment Outcome , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
2.
Front Oncol ; 12: 895106, 2022.
Article in English | MEDLINE | ID: mdl-35860596

ABSTRACT

Hepatocellular carcinomas remain as a global health threat given its high mortality rate. We have previously identified the selectivity of cold atmospheric plasma (CAP) against multiple types of malignant tumors and proposed it as a promising onco-therapeutic strategy. Here, we investigated its roles in controlling hepatocellular carcinoma malignancy and one possible driving molecular mechanism. By focusing on post-translational modifications including acetylation, phosphorylation, and ubiquitination, we identified the crosstalk between EGFR acetylation and EGFR(Tyr1068) phosphorylation and their collective roles in determining LC3B ubiquitination and proposed the EGFR/p-JNK/BIRC6/LC3B axis in CAP-triggered autophagy. Our study not only demonstrated the selectivity of CAP against hepatocellular carcinoma malignancy and confirmed its roles as an onco-therapeutic tool but also opened the horizon of translating CAP into clinics toward a broader scope that included human longevity and anti-aging.

3.
Brief Funct Genomics ; 21(4): 280-295, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35753690

ABSTRACT

With the rapid advancement in sequencing technologies, the concept of omics has revolutionized our understanding of cellular behaviors. Conventional omics investigation approaches measure the averaged behaviors of multiple cells, which may easily hide signals represented by a small-cell cohort, urging for the development of techniques with enhanced resolution. Single-cell RNA sequencing, investigating cell transcriptomics at the resolution of a single cell, has been rapidly expanded to investigate other omics such as genomics, proteomics and metabolomics since its invention. The requirement for comprehensive understanding of complex cellular behavior has led to the integration of multi-omics and single-cell sequencing data with other layers of information such as spatial data and the CRISPR screening technique towards gained knowledge or innovative functionalities. The development of single-cell sequencing in both dimensions has rendered it a unique field that offers us a versatile toolbox to delineate complex diseases, including cancers.


Subject(s)
Genomics , Neoplasms , Genomics/methods , Humans , Metabolomics/methods , Proteomics/methods , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...