Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35457869

ABSTRACT

X-ray imaging machines are widely used in border control checkpoints or public transportation, for luggage scanning and inspection. Recent advances in deep learning enabled automatic object detection of X-ray imaging results to largely reduce labor costs. Compared to tasks on natural images, object detection for X-ray inspection are typically more challenging, due to the varied sizes and aspect ratios of X-ray images, random locations of the small target objects within the redundant background region, etc. In practice, we show that directly applying off-the-shelf deep learning-based detection algorithms for X-ray imagery can be highly time-consuming and ineffective. To this end, we propose a Task-Driven Cropping scheme, dubbed TDC, for improving the deep image detection algorithms towards efficient and effective luggage inspection via X-ray images. Instead of processing the whole X-ray images for object detection, we propose a two-stage strategy, which first adaptively crops X-ray images and only preserves the task-related regions, i.e., the luggage regions for security inspection. A task-specific deep feature extractor is used to rapidly identify the importance of each X-ray image pixel. Only the regions that are useful and related to the detection tasks are kept and passed to the follow-up deep detector. The varied-scale X-ray images are thus reduced to the same size and aspect ratio, which enables a more efficient deep detection pipeline. Besides, to benchmark the effectiveness of X-ray image detection algorithms, we propose a novel dataset for X-ray image detection, dubbed SIXray-D, based on the popular SIXray dataset. In SIXray-D, we provide the complete and more accurate annotations of both object classes and bounding boxes, which enables model training for supervised X-ray detection methods. Our results show that our proposed TDC algorithm can effectively boost popular detection algorithms, by achieving better detection mAPs or reducing the run time.

SELECTION OF CITATIONS
SEARCH DETAIL
...