Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-33619061

ABSTRACT

The ability of HIV to integrate into the host genome and establish latent reservoirs is the main hurdle preventing an HIV cure. LEDGINs are small-molecule integrase inhibitors that target the binding pocket of LEDGF/p75, a cellular cofactor that substantially contributes to HIV integration site selection. They are potent antivirals that inhibit HIV integration and maturation. In addition, they retarget residual integrants away from transcription units and towards a more repressive chromatin environment. As a result, treatment with the LEDGIN CX14442 yielded residual provirus that proved more latent and more refractory to reactivation, supporting the use of LEDGINs as research tools to study HIV latency and a functional cure strategy. In this study we compared GS-9822, a potent, pre-clinical lead compound, with CX14442 with respect to antiviral potency, integration site selection, latency and reactivation. GS-9822 was more potent than CX14442 in most assays. For the first time, the combined effects on viral replication, integrase-LEDGF/p75 interaction, integration sites, epigenetic landscape, immediate latency and latency reversal was demonstrated at nanomolar concentrations achievable in the clinic. GS-9822 profiles as a preclinical candidate for future functional cure research.

2.
J Med Chem ; 61(21): 9473-9499, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30074795

ABSTRACT

Cyclophilins are a family of peptidyl-prolyl isomerases that are implicated in a wide range of diseases including hepatitis C. Our aim was to discover through total synthesis an orally bioavailable, non-immunosuppressive cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus (HCV) activity that could serve as part of an all oral antiviral combination therapy. An initial lead 2 derived from the sanglifehrin A macrocycle was optimized using structure based design to produce a potent and orally bioavailable inhibitor 3. The macrocycle ring size was reduced by one atom, and an internal hydrogen bond drove improved permeability and drug-like properties. 3 demonstrates potent Cyp inhibition ( Kd = 5 nM), potent anti-HCV 2a activity (EC50 = 98 nM), and high oral bioavailability in rat (100%) and dog (55%). The synthetic accessibility and properties of 3 support its potential as an anti-HCV agent and for interrogating the role of Cyp inhibition in a variety of diseases.


Subject(s)
Cyclophilins/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Administration, Oral , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Biological Availability , Cell Line , Cyclophilins/chemistry , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Hepacivirus/drug effects , Lactones/administration & dosage , Lactones/chemistry , Lactones/pharmacokinetics , Lactones/pharmacology , Models, Molecular , Protein Conformation , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology
3.
J Med Chem ; 57(5): 2161-6, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24512292

ABSTRACT

The exploration of novel inhibitors of the HCV NS4B protein that are based on a 2-oxadiazoloquinoline scaffold is described. Optimization to incorporate activity across genotypes led to a potent new series with broad activity, of which inhibitor 1 displayed the following EC50 values: 1a, 0.08 nM; 1b, 0.10 nM; 2a, 3 nM; 2b, 0.6 nM, 3a, 3.7 nM; 4a, 0.9 nM; 6a, 3.1 nM.


Subject(s)
Genotype , Hepacivirus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Hepacivirus/genetics , Magnetic Resonance Spectroscopy , Mass Spectrometry
4.
Bioorg Med Chem Lett ; 22(7): 2629-34, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22366653
5.
Bioorg Med Chem Lett ; 22(3): 1394-6, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22244938

ABSTRACT

A potent and novel class of phosphinic acid derived product-like inhibitors of the HCV NS3/4A protease was discovered previously. Modification of the phosphinic acid and quinoline heterocycle led to GS-9256 with potent cell-based activity and favorable pharmacokinetic parameters. Based on these attributes, GS-9256 was advanced to human clinical trial as a treatment for chronic infection with genotype 1 HCV.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Peptides, Cyclic/chemistry , Phosphinic Acids/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Dogs , Enzyme Inhibitors/chemical synthesis , Hepacivirus/enzymology , Humans , Inhibitory Concentration 50 , Intracellular Signaling Peptides and Proteins , Molecular Structure , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Phosphinic Acids/chemical synthesis , Phosphinic Acids/pharmacology , Swine
7.
Bioorg Med Chem Lett ; 16(15): 3989-92, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16723225

ABSTRACT

A novel class of tri-cyclic HIV integrase inhibitors were designed based on conformational analysis of 1,6-naphthyridine carboxamide compound L-870810 and docking the designed inhibitor into the active site of our integrase enzyme model. The efficient syntheses of pyrroloquinoline tri-cyclic analogs are described. The SAR studies resulted in the identification of a lead compound that is more potent and more soluble than L-870810.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/pharmacology , Drug Design , Naphthyridines/chemistry , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 16(15): 4031-5, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16716589

ABSTRACT

A series of novel tricyclic inhibitors of HIV-1 integrase enzyme was prepared. The effect of substitution at C-6 of the 9-hydroxy-6,7-dihydropyrrolo[3,4-g]quinolin-8-one compounds was studied in vitro. Inhibitors with small side chains at C-6 were generally well tolerated by the enzyme, and the physicochemical properties of the inhibitors were improved by substitution of a small alkyl group at this position. A second series of analogs bearing a sulfamate at the C-5 position with various C-6 substituents were prepared to explore the interplay between the two groups. The SAR of the two classes are not parallel; modification at C-5 impacts the effect of substitutions at C-6.


Subject(s)
HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV Integrase/drug effects , Structure-Activity Relationship
9.
Antimicrob Agents Chemother ; 49(6): 2460-6, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15917547

ABSTRACT

Here we present data on the mechanism of action of VP-14637 and JNJ-2408068 (formerly R-170591), two small-molecule inhibitors of respiratory syncytial virus (RSV). Both inhibitors exhibited potent antiviral activity with 50% effective concentrations (EC50s) of 1.4 and 2.1 nM, respectively. A similar inhibitory effect was observed in a RSV-mediated cell fusion assay (EC50=5.4 and 0.9 nM, respectively). Several drug-resistant RSV variants were selected in vitro in the presence of each compound. All selected viruses exhibited significant cross-resistance to both inhibitors and contained various single amino acid substitutions in two distinct regions of the viral F protein, the heptad repeat 2 (HR2; mutations D486N, E487D, and F488Y), and the intervening domain between HR1 and HR2 (mutation K399I and T400A). Studies using [3H]VP-14637 revealed a specific binding of the compound to RSV-infected cells that was efficiently inhibited by JNJ-2408068 (50% inhibitory concentration=2.9 nM) but not by the HR2-derived peptide T-118. Further analysis using a transient T7 vaccinia expression system indicated that RSV F protein is sufficient for this interaction. F proteins containing either the VP-14637 or JNJ-2408068 resistance mutations exhibited greatly reduced binding of [3H]VP-14637. Molecular modeling analysis suggests that both molecules may bind into a small hydrophobic cavity in the inner core of F protein, interacting simultaneously with both the HR1 and HR2 domains. Altogether, these data indicate that VP-14637 and JNJ-2408068 interfere with RSV fusion through a mechanism involving a similar interaction with the F protein.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Membrane Fusion/drug effects , Phenols/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Tetrazoles/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Benzimidazoles/metabolism , Cell Fusion , Cell Line , Chick Embryo , Cricetinae , Drug Resistance, Viral , Humans , Hydrazones , Models, Molecular , Phenols/chemistry , Phenols/metabolism , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/pathogenicity , Tetrazoles/chemistry , Tetrazoles/metabolism , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism
10.
J Virol ; 77(9): 5054-64, 2003 May.
Article in English | MEDLINE | ID: mdl-12692208

ABSTRACT

Human respiratory syncytial virus (RSV) is a major cause of respiratory tract infections worldwide. Several novel small-molecule inhibitors of RSV have been identified, but they are still in preclinical or early clinical evaluation. One such inhibitor is a recently discovered triphenol-based molecule, VP-14637 (ViroPharma). Initial experiments suggested that VP-14637 acted early and might be an RSV fusion inhibitor. Here we present studies demonstrating that VP-14637 does not block RSV adsorption but inhibits RSV-induced cell-cell fusion and binds specifically to RSV-infected cells with an affinity corresponding to its inhibitory potency. VP-14637 is capable of specifically interacting with the RSV fusion protein expressed by a T7 vaccinia virus system. RSV variants resistant to VP-14637 were selected; they had mutations localized to two distinct regions of the RSV F protein, heptad repeat 2 (HR2) and the intervening domain between heptad repeat 1 (HR1) and HR2. No mutations arose in HR1, suggesting a mechanism other than direct disruption of the heptad repeat interaction. The F proteins containing the resistance mutations exhibited greatly reduced binding of VP-14637. Despite segregating with the membrane fraction following incubation with intact RSV-infected cells, the compound did not bind to membranes isolated from RSV-infected cells. In addition, binding of VP-14637 was substantially compromised at temperatures of < or =22 degrees C. Therefore, we propose that VP-14637 inhibits RSV through a novel mechanism involving an interaction between the compound and a transient conformation of the RSV F protein.


Subject(s)
Membrane Fusion/drug effects , Phenols/metabolism , Phenols/pharmacology , Respiratory Syncytial Viruses/drug effects , Tetrazoles/metabolism , Tetrazoles/pharmacology , Viral Proteins/metabolism , Animals , Cell Fusion , Cell Line , Drug Resistance, Viral/genetics , Humans , Hydrazones , Mutation , Phenols/chemistry , Respiratory Syncytial Viruses/metabolism , Respiratory Syncytial Viruses/pathogenicity , Tetrazoles/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...