Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Bull ; 39(11): 1669-1682, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37368194

ABSTRACT

The amygdala is an important hub for regulating emotions and is involved in the pathophysiology of many mental diseases, such as depression and anxiety. Meanwhile, the endocannabinoid system plays a crucial role in regulating emotions and mainly functions through the cannabinoid type-1 receptor (CB1R), which is strongly expressed in the amygdala of non-human primates (NHPs). However, it remains largely unknown how the CB1Rs in the amygdala of NHPs regulate mental diseases. Here, we investigated the role of CB1R by knocking down the cannabinoid receptor 1 (CNR1) gene encoding CB1R in the amygdala of adult marmosets through regional delivery of AAV-SaCas9-gRNA. We found that CB1R knockdown in the amygdala induced anxiety-like behaviors, including disrupted night sleep, agitated psychomotor activity in new environments, and reduced social desire. Moreover, marmosets with CB1R-knockdown had up-regulated plasma cortisol levels. These results indicate that the knockdown of CB1Rs in the amygdala induces anxiety-like behaviors in marmosets, and this may be the mechanism underlying the regulation of anxiety by CB1Rs in the amygdala of NHPs.


Subject(s)
Callithrix , Cannabinoids , Animals , Receptors, Cannabinoid , Anxiety , Amygdala , Phenotype
2.
J Vis Exp ; (196)2023 06 09.
Article in English | MEDLINE | ID: mdl-37358299

ABSTRACT

The common marmoset (Callithrix jacchus) is a small and highly social New World monkey with high reproduction rates, which has been proven to be a compelling non-human primate model for biomedical and neuroscience research. Some females give birth to triplets; however, the parents cannot raise all of them. To save these infants, we have developed a hand-rearing method for raising newborn marmosets. In this protocol, we describe the formula of the food, the time for feeding, the configuration of the temperature and humidity, as well as the adaptation of the hand-reared infants to the colony environment. This hand-rearing method significantly increases the survival rate of marmoset infants (without hand-rearing: 45%; with hand-rearing: 86%) and provides the opportunity to study the development of marmoset infants with similar genetic backgrounds raised in different postnatal environments. As the method is practical and easy to use, we anticipate that it could also be applied to other labs working with common marmosets.


Subject(s)
Callithrix , Food , Animals , Female
3.
Cereb Cortex ; 33(7): 3372-3386, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35851798

ABSTRACT

Cortical feedback has long been considered crucial for the modulation of sensory perception and recognition. However, previous studies have shown varying modulatory effects of the primary auditory cortex (A1) on the auditory response of subcortical neurons, which complicate interpretations regarding the function of A1 in sound perception and recognition. This has been further complicated by studies conducted under different brain states. In the current study, we used cryo-inactivation in A1 to examine the role of corticothalamic feedback on medial geniculate body (MGB) neurons in awake marmosets. The primary effects of A1 inactivation were a frequency-specific decrease in the auditory response of most MGB neurons coupled with an increased spontaneous firing rate, which together resulted in a decrease in the signal-to-noise ratio. In addition, we report for the first time that A1 robustly modulated the long-lasting sustained response of MGB neurons, which changed the frequency tuning after A1 inactivation, e.g. some neurons are sharper with corticofugal feedback and some get broader. Taken together, our results demonstrate that corticothalamic modulation in awake marmosets serves to enhance sensory processing in a manner similar to center-surround models proposed in visual and somatosensory systems, a finding which supports common principles of corticothalamic processing across sensory systems.


Subject(s)
Auditory Cortex , Callithrix , Animals , Wakefulness , Auditory Cortex/physiology , Acoustic Stimulation , Thalamus/physiology , Geniculate Bodies/physiology , Auditory Perception/physiology , Auditory Pathways/physiology
4.
Adv Sci (Weinh) ; : e2203665, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36373709

ABSTRACT

The cerebellum is involved in encoding balance, posture, speed, and gravity during locomotion. However, most studies are carried out on flat surfaces, and little is known about cerebellar activity during free ambulation on slopes. Here, it has been imaged the neuronal activity of cerebellar molecular interneurons (MLIs) and Purkinje cells (PCs) using a miniaturized microscope while a mouse is walking on a slope. It has been found that the neuronal activity of vermal MLIs specifically enhanced during uphill and downhill locomotion. In addition, a subset of MLIs is activated during entire uphill or downhill positions on the slope and is modulated by the slope inclines. In contrast, PCs showed counter-balanced neuronal activity to MLIs, which reduced activity at the ramp peak. So, PCs may represent the ramp environment at the population level. In addition, chemogenetic inactivation of lobule V of the vermis impaired uphill locomotion. These results revealed a novel micro-circuit in the vermal cerebellum that regulates ambulatory behavior in 3D terrains.

5.
Front Behav Neurosci ; 15: 750894, 2021.
Article in English | MEDLINE | ID: mdl-34776893

ABSTRACT

Behavioral measurement and evaluation are broadly used to understand brain functions in neuroscience, especially for investigations of movement disorders, social deficits, and mental diseases. Numerous commercial software and open-source programs have been developed for tracking the movement of laboratory animals, allowing animal behavior to be analyzed digitally. In vivo optical imaging and electrophysiological recording in freely behaving animals are now widely used to understand neural functions in circuits. However, it is always a challenge to accurately track the movement of an animal under certain complex conditions due to uneven environment illumination, variations in animal models, and interference from recording devices and experimenters. To overcome these challenges, we have developed a strategy to track the movement of an animal by combining a deep learning technique, the You Only Look Once (YOLO) algorithm, with a background subtraction algorithm, a method we label DeepBhvTracking. In our method, we first train the detector using manually labeled images and a pretrained deep-learning neural network combined with YOLO, then generate bounding boxes of the targets using the trained detector, and finally track the center of the targets by calculating their centroid in the bounding box using background subtraction. Using DeepBhvTracking, the movement of animals can be tracked accurately in complex environments and can be used in different behavior paradigms and for different animal models. Therefore, DeepBhvTracking can be broadly used in studies of neuroscience, medicine, and machine learning algorithms.

6.
Behav Brain Res ; 414: 113481, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34302876

ABSTRACT

Rho-associated coiled-coil kinase (ROCK), a serine/threonine kinase regulated by the small GTPase RhoA, is involved in regulating cell migration, proliferation, and survival. Numerous studies have shown that the RhoA/ROCK signaling pathway can promote Alzheimer's disease (AD) occurrence. ROCK activation increases ß-secretase activity and promotes amyloid-beta (Aß) production; moreover, Aß further activates ROCK. This is suggestive of a possible positive feedback role for Aß and ROCK. Moreover, ROCK activation promotes the formation of neurofibrillary tangles and abnormal synaptic contraction. Additionally, ROCK activation can promote the neuroinflammatory response by activating microglia and astrocytes to release inflammatory cytokines. Therefore, ROCK is a promising drug target in AD; further, there is a need to elucidate the specific mechanism of action.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases/metabolism , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , tau Proteins/metabolism , Animals , Humans
7.
J Alzheimers Dis ; 80(3): 949-961, 2021.
Article in English | MEDLINE | ID: mdl-33612545

ABSTRACT

Amyloid-ß (Aß) peptides and hyperphosphorylated tau protein are the most important pathological markers of Alzheimer's disease (AD). Neuroinflammation and oxidative stress are also involved in the development and pathological mechanism of AD. Hypoxia inducible factor-1α (HIF-1α) is a transcriptional factor responsible for cellular and tissue adaption to low oxygen tension. Emerging evidence has revealed HIF-1α as a potential medicinal target for neurodegenerative diseases. On the one hand, HIF-1α increases AßPP processing and Aß generation by promoting ß/γ-secretases and suppressing α-secretases, inactivates microglia and reduces their activity, contributes to microglia death and neuroinflammation, which promotes AD pathogenesis. On the other hand, HIF-1α could resist the toxic effect of Aß, inhibits tau hyperphosphorylation and promotes microglial activation. In summary, this review focuses on the potential complex roles and the future perspectives of HIF-1α in AD, in order to provide references for seeking new drug targets and treatment methods for AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...