Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Eur Radiol ; 32(7): 4760-4770, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35094118

ABSTRACT

OBJECTIVE: To develop a dynamic 3D radiomics analysis method using artificial intelligence technique for automatically assessing four disease stages (i.e., early, progressive, peak, and absorption stages) of COVID-19 patients on CT images. METHODS: The dynamic 3D radiomics analysis method was composed of three AI algorithms (the lung segmentation, lesion segmentation, and stage-assessing AI algorithms) that were trained and tested on 313,767 CT images from 520 COVID-19 patients. This proposed method used 3D lung lesion that was segmented by the lung and lesion segmentation algorithms to extract radiomics features, and then combined with clinical metadata to assess the possible stage of COVID-19 patients using stage-assessing algorithm. Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were used to evaluate diagnostic performance. RESULTS: Of 520 patients, 66 patients (mean age, 57 years ± 15 [standard deviation]; 35 women), including 203 CT scans, were tested. The dynamic 3D radiomics analysis method used 30 features, including 27 radiomics features and 3 clinical features to assess the possible disease stage of COVID-19 with an accuracy of 90%. For the prediction of each stage, the AUC of stage 1 was 0.965 (95% CI: 0.934, 0.997), AUC of stage 2 was 0.958 (95% CI: 0.931, 0.984), AUC of stage 3 was 0.998 (95% CI: 0.994, 1.000), and AUC of stage 4 was 0.975 (95% CI: 0.956, 0.994). CONCLUSION: With high diagnostic performance, the dynamic 3D radiomics analysis using artificial intelligence could represent a potential tool for helping hospitals make appropriate resource allocations and follow-up of treatment response. KEY POINTS: • The AI segmentation algorithms were able to accurately segment the lung and lesion of COVID-19 patients of different stages. • The dynamic 3D radiomics analysis method successfully extracted the radiomics features from the 3D lung lesion. • The stage-assessing AI algorithm combining with clinical metadata was able to assess the four stages with an accuracy of 90%, a macro-average AUC of 0.975.


Subject(s)
COVID-19 , Artificial Intelligence , Female , Humans , Lung/diagnostic imaging , Middle Aged , ROC Curve , Retrospective Studies , Tomography, X-Ray Computed/methods
2.
Expert Syst Appl ; 185: 115616, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34334965

ABSTRACT

Millions of positive COVID-19 patients are suffering from the pandemic around the world, a critical step in the management and treatment is severity assessment, which is quite challenging with the limited medical resources. Currently, several artificial intelligence systems have been developed for the severity assessment. However, imprecise severity assessment and insufficient data are still obstacles. To address these issues, we proposed a novel deep-learning-based framework for the fine-grained severity assessment using 3D CT scans, by jointly performing lung segmentation and lesion segmentation. The main innovations in the proposed framework include: 1) decomposing 3D CT scan into multi-view slices for reducing the complexity of 3D model, 2) integrating prior knowledge (dual-Siamese channels and clinical metadata) into our model for improving the model performance. We evaluated the proposed method on 1301 CT scans of 449 COVID-19 cases collected by us, our method achieved an accuracy of 86.7% for four-way classification, with the sensitivities of 92%, 78%, 95%, 89% for four stages. Moreover, ablation study demonstrated the effectiveness of the major components in our model. This indicates that our method may contribute a potential solution to severity assessment of COVID-19 patients using CT images and clinical metadata.

SELECTION OF CITATIONS
SEARCH DETAIL
...