Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 20(5): 931-941, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32022068

ABSTRACT

The recent boom of nanomaterials printing in the fields of biomedical engineering, bioanalysis and flexible electronics has greatly stimulated researchers' interest in printing technologies. However, specifically formulated nanomaterial inks have limited the types of printable nanomaterials. Here, a unique non-powered capillary force-driven stamped (CFDS) approach, combining a 3D-printed stamper with a paper substrate, is developed for directly printing patterned nanomaterials aqueous solution. The CFDS approach has two processes, including the loading process in which the capillary force of the stamper channel is stronger than gravity, and the deposition process, in which the synergistic action of the capillary force of the paper fibre tubes and gravity is approximately 20 times the capillary force of the stamper channel. Four additive-free nanomaterial aqueous solutions, including nanowires, nanosheets, nanostars and nanogels, are used to print patterns, and show slight diffusion and desired uniformity with a diffusion rate and roundness of 1.12 and 0.78, respectively, demonstrating the feasibility of this approach. Four kinds of nanogel with different fluorescence labels are simultaneously printed to challenge the approach and demonstrate its flexibility and scalability. The resolution of the approach is 0.3 mm. Without any post-processing, the stamped paper substrates directly serve as paper-based surface enhanced Raman scattering substrates with an enhancement factor of 4 × 106 and as electrodes with a resistance of 0.74 Ω, demonstrating their multi-functionality. Due to its general, flexible and scalable applicability, this simple, low-cost and non-powered approach could be widely applied to the personalized printing of nanomaterials on paper substrates.

2.
Nanomaterials (Basel) ; 9(10)2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31614763

ABSTRACT

Alginate as a good drug delivery vehicle has excellent biocompatibility and biodegradability. In the ionic gelation process between alginate and Ca2+, the violent reaction is the absence of a well-controlled strategy in the synthesizing calcium alginate (CaA) microgels. In this study, a concentration-controlled microfluidic chip with central buffer flow was designed and 3D-printed to well-control the synthesis process of CaA microgels by the diffusion mixing pattern. The diffusion mixing pattern in the microfluidic chip can slow down the ionic gelation process in the central stream. The particle size can be influenced by channel length and flow rate ratio, which can be regulated to 448 nm in length and 235 nm in diameter. The delivery ratio of Doxorubicin (Dox) in CaA microgels are up to 90% based on the central stream strategy. CaA@Dox microgels with pH-dependent release property significantly enhances the cell killing rate against human breast cancer cells (MCF-7). The diffusion mixing pattern gives rise to well-controlled synthesis of CaA microgels, serving as a continuous and controllable production process for advanced drug delivery systems.

3.
Biomed Opt Express ; 9(2): 518-528, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29552390

ABSTRACT

Pre-mRNA splicing is an essential step in gene expression in most eukaryote genes. Here we present the feasibility of a genetically encoded luciferase reporter to monitor the pre-mRNA splicing process in living cells and animals. We showed that the splicing activity change induced by isoginkgetin could be readily visualized in vitro both in a dose and time dependent manner. Moreover, the pre-mRNA splicing process could be also obviously detected in mice by bioluminescence imaging and confirmed by RT-PCR. Our work provided a reporter system that allows high-throughput screening of chemical libraries to identify potential compounds leading to aberrant patterns of splicing.

SELECTION OF CITATIONS
SEARCH DETAIL
...