Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 720: 137711, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32325605

ABSTRACT

The phosphorus (P) supply is mismatched with rice demand in the early and late stages of rice growth, which primarily results in low P use efficiency and high environmental risk. In recent years, the use of the natural periphyton in nutrient regulation in paddy fields has attracted much research interest. However, a mechanistic understanding of the action of periphyton on P biogeochemical cycling during the pivotal stages of rice growth has received little attention. In this study, the influence of periphyton proliferation on the soil surface and its consequential decomposition on P migration and bioavailability were investigated in two paddy soils using two microcosm experiments. The results showed that periphyton rapidly accumulated fertilizer P when it proliferated on the soil surface under favorable light condition, which led to more fertilizer P being stored on the soil surface and less P being fixed by soil particles or transported via runoff into the water bodies. The decomposition of periphyton under unfavorable light condition not only increased soil soluble reactive P, but also increased the amount of easily available P species, such as labile P, AlP, FeP, and mobilized OP. Thus, periphyton colonizing the soil surface in the early stage of rice growth could act as a P sink and decrease the P environmental risk, and its decomposition in the late stage of rice growth could act as a P source and activator. Phosphorus bioavailability regulated by periphyton could be synchronous with rice needs. Thus, periphyton has the potential to increase P use efficiency in paddy fields.


Subject(s)
Oryza , Fertilizers , Periphyton , Phosphorus , Soil
2.
J Hazard Mater ; 189(1-2): 609-13, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21388738

ABSTRACT

The nanometer TiO(2) particle was coated onto the inner wall of a T-shaped quartz tube atomizer (QTA) and then was used as a new atomizer (NT-QTA) for the determination of Hg and Se by hydride generation atomic absorption spectrometry (HGAAS). After coating 67.4 mg TiO(2) on a quartz tube, the analytical performance of NT-QTA-HGAAS was compared to conventional QTA-HGAAS and it was improved as follows: (a) the linear range of the calibration curves was expanded from 10.0-80.0 ng mL(-1) to 5.0-150.0 ng mL(-1) for Hg, and from 10.0-70.0 ng mL(-1) to 5.0-100.0 ng mL(-1) for Se; (b) the characteristic concentration of was decreased from 2.8 ng mL(-1)/1% to 1.1 ng mL(-1)/1% for Hg and from 1.2 ng mL(-1)/1% to 0.8 ng mL(-1)/1% for Se; and (c) the interference from the coexistence of As on the determination of Hg and Se could be eliminated. The achieved technique was applied for the determination of Hg and Se in herbal medicines and hair.


Subject(s)
Mercury/analysis , Selenium/analysis , Spectrophotometry, Atomic/methods , Equipment Design , Hair/chemistry , Herbal Medicine , Miniaturization , Quartz , Spectrophotometry, Atomic/instrumentation , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...