Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Water Res ; 257: 121669, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728786

ABSTRACT

Tire wear particles (TWPs) are considered a significant contributor of microplastics (MPs) in the sludge during heavy rainfall events. Numerous studies have shown that hydrothermal treatment (HT) of sludge can accelerate the leaching of MP-derived compound into hydrothermal liquid, thus impairing the performance of subsequent anaerobic digestion and the quality of the hydrothermal liquid fertilizer. However, the leaching behavior of TWPs in the HT of sludge remains inadequately explored. This study examined the molecular composition of TWP-derived compounds and transformation pathways of representative tire-related additives under different hydrothermal temperatures using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with mass difference analysis. The acute toxicity and phytotoxicity of TWP leachates were assessed using Vibrio qinghaiensis Q67 and rice hydroponics experiments. The results indicated that elevating the hydrothermal temperature not only amplified the leaching behavior of TWPs but also enhanced the chemical complexity of the TWP leachate. Utilizing both suspect and non-target screenings, a total of 144 compounds were identified as additives, including N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PDD), hexa(methoxymethyl)melamine (HMMM), dibutyl phthalate (DBP). These additives underwent various reactions, such as desaturation, acetylation, and other reactions, leading to the formation of different transformation products (TPs). Moreover, certain additives, including caprolactam and 2,2,6,6-tetramethyl-4-piperidinol, demonstrated the potential to form conjugate products with amino acids or Maillard products. Meanwhile, TWP-derived compounds showed significant acute toxicity and detrimental effects on plant growth. This study systematically investigated the environmental fate of TWPs and their derived compounds during the HT of sludge, offering novel insights into the intricate interactions between the micropollutants and dissolved organic matter (DOM) in sludge.


Subject(s)
Sewage , Sewage/chemistry , Microplastics , Water Pollutants, Chemical/chemistry , Tandem Mass Spectrometry , Waste Disposal, Fluid
2.
Water Res ; 258: 121759, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38754299

ABSTRACT

Waste activated sludge serves an important reservoir for antibiotics within wastewater treatment plants, and understanding the occurrence and evolution of antibiotics during sludge treatment is crucial to mitigate the potential risks of subsequent resource utilization of sludge. This study explores the degradation and transformation mechanisms of three typical antibiotics, oxytetracycline (OTC), ofloxacin (OFL), and azithromycin (AZI) during sludge hydrothermal treatment (HT), and investigates the influence of biopolymers transformation on the fate of these antibiotics. The findings indicate that HT induces a shift of antibiotics from solid-phase adsorption to liquid-phase dissolution in the initial temperature range of 25-90 °C, underscoring this phase's critical role in preparing antibiotics for subsequent degradation phases. Proteins (PN) and humic acids emerge as crucial for antibiotic binding, facilitating their redistribution within sludge. Specifically, the binding capacity sequence of biopolymers to antibiotics is as follows: OFL>OTC>AZI, highlighting that OFL-biopolymers display stronger electrostatic attraction, more available adsorption sites, and more stable binding strength. Furthermore, antibiotic degradation mainly occurs above 90 °C, with AZI being the most temperature-sensitive, degrading 92.97% at 180 °C, followed by OTC (91.26%) and OFL (52.51%). Concurrently, the degradation products of biopolymers compete for active sites to form novel amino acid-antibiotic conjugates, which inhibits the further degradation of antibiotics. These findings illuminate the effects of biopolymers evolution on intricate dynamics of antibiotics fate in sludge HT and are helpful to optimize the sludge HT process for effective antibiotics abatement.

3.
Water Res ; 255: 121446, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38489963

ABSTRACT

Inorganic coagulants (aluminum and iron salt) are widely used to improve sludge dewaterability, resulting in numerous residues in dewatered sludge. Composting refers to the controlled microbial process that converts organic wastes into fertilizer, and coagulant residues in dewatered sludge can affect subsequent compost efficiency and resource recycling, which remains unclear. This work investigated the effects of two typical metal salt coagulants (poly aluminum chloride [PAC] and poly ferric sulfate [PFS]) conditioning on sludge compost. Our results revealed that PAC conditioning inhibited composting with decreased peak temperature, microbial richness, enzymatic reaction intensities, and compost quality, associated with decreased pH and microbial toxicity of aluminum. Nevertheless, PFS conditioning selectively enriched Pseudoxanthomonas sp. and resulted in more fertile compost with increased peak temperature, enzymatic reaction intensities, and humification degree. Spectroscopy and mass difference analyses indicated that PFS conditioning enhanced reaction intensities of labile biopolymers at the thermophilic stage, mainly comprising hydrolyzation (H2O), dehydrogenation (-H2, -H4), oxidation (+O1H2), and other reactions (i.e., +CH2, C2H4O1, C2H6O1). Unlike the common composting process primarily conducts humification at the cooling stage, PFS conditioning changed the main occurrence stage to the thermophilic stage. Non-targeted metabolomics revealed that indole (a humification intermediate) is responsible for the increased humification degree and indoleacetic acid content in the PFS-conditioned compost, which then promoted compost quality. Plant growth experiments further confirmed that the dissolved organic matter (DOM) in PFS-conditioned compost produced the maximum plant biomass. This study provided molecular-level evidence that PFS conditioning can promote humification and compost fertility during sludge composting, enabling chemical conditioning optimization for sustainable management of sludge.

6.
Eur J Pharmacol ; 957: 175988, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37597647

ABSTRACT

Oxidative stress plays a dual role in tumor survival, either promoting tumor development or killing tumor cells under different conditions. Dankasterone A is a secondary metabolite derived from the fungus Talaromyces purpurogenu. It showed good potential in a screen for anti-prostate cancer compounds. In this study, MTT results showed dankasterone A was cytotoxic to prostate cancer cells, with an IC50 of 5.10 µM for PC-3 cells and 3.41 µM for 22Rv1 cells. Further studies, plate cloning assays and real-time cell analysis monitoring showed that dankasterone A significantly inhibited clonal colony formation and cell migration in 22Rv1 and PC-3 cells. In addition, flow cytometry results showed that dankasterone A induced apoptosis in prostate cancer cells while having no impact on cell cycle distribution. At the molecular level, Protein microarray experiments and western blot assays revealed that dankasterone A specifically and dramatically upregulated HO-1 protein expression; and the results of cell fluorescence staining showed that dankasterone A induced overexpression of reactive oxygen species in 22Rv1 and PC-3 cells. Taken together, dankasterone A induced prostate cancer cells to undergo intense oxidative stress, which resulted in the production of large amounts of HO-1 and the release of large amounts of reactive oxygen species, leading to apoptosis of prostate cancer cells, ultimately resulting in the inhibition of both cell proliferation and migration. We also validated the anti-prostate cancer effects of dankasterone A in vivo in a zebrafish xenograft tumor model. In conclusion, dankasterone A has the potential to be developed as an anti-prostate cancer drug.


Subject(s)
Prostatic Neoplasms , Zebrafish , Humans , Male , Animals , Reactive Oxygen Species , Prostatic Neoplasms/drug therapy , Cell Death , Oxidative Stress , Disease Models, Animal
7.
Water Res ; 235: 119910, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37001233

ABSTRACT

Understanding the composition, transformation and bioactivity of dissolved organic matter (DOM) at the molecular level is crucial for investigating the hydrothermal humification process of wastewater sludge and producing ecological fertilizers. In this study, DOM transformation pathways under alkali-thermal humification treatment (AHT) were characterized by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) in conjunction with molecular reaction network analysis. The effects of DOM on plant growth were examined using hydroponics and transcriptomic analysis. In the wastewater sludge humification process, AHT produced maximum amounts of protein (3260.56 mg/L) and humic acid (5788.24 mg/L) after 12 h. FT-ICR MS results indicated that protein-like structures were prone to continuous oxidation and were ultimately transformed into aromatic N-containing compounds resembling humic substances. Several reactive fragments (such as -C2H2O2, -C3H4O2, and -C4H6O2) formed by the Maillard reaction (MR) were identified as potential precursors to humic acid (HA). In terms of biological effects, DOM12h showed the highest rice germination and growth activity, whereas that produced by AHT for a longer period (> 12 h) displayed phytotoxicity owing to the accumulation of toxic substances. Plant biostimulants (such as amino acids and HAs) in DOM improved energy metabolism and carbohydrate storage in rice seedlings by upregulating the "starch and sucrose metabolism" pathways. Toxic substances (such as pyrrole, pyridine, and melanoidin) in DOM can activate cell walls formation to inhibit abiotic stimuli in rice seedlings through the biosynthesis of phenylpropanoid pathway. These findings provide a theoretical basis for optimizing sludge hydrothermal humification and recovering high-quality liquid fertilizers.


Subject(s)
Sewage , Wastewater , Humic Substances/analysis , Dissolved Organic Matter , Fertilizers , Hydrogen Peroxide/analysis , Organic Chemicals
8.
Redox Biol ; 62: 102684, 2023 06.
Article in English | MEDLINE | ID: mdl-36963287

ABSTRACT

Ovarian dysfunction is a common cause of female infertility, which is associated with genetic, autoimmune and environmental factors. Granulosa cells (GCs) constitute the largest cell population of ovarian follicles. Changes in GCs, including oxidative stress (OS) and excessive reactive oxygen species (ROS), are involved in regulating ovary function. miR-484 is highly expressed in 3-NP-induced oxidative stress models of ovaries and GCs. miR-484 overexpression aggravated GCs dysfunction and thereby intensified ovarian oxidative stress injury in mice. Moreover, bioinformatic analyses, luciferase assays and pull-down assays indicated that LINC00958 acted as a competing endogenous RNA (ceRNA) for miR-484 and formed a signaling axis with Sestrin2(SESN2) under oxidative stress conditions, which in turn regulated mitochondrial functions and mitochondrial-related apoptosis in GCs. Additionally, the inhibition of miR-484 alleviated GCs dysfunction under ovarian oxidative stress condition. Our present study revealed the role of miR-484 in oxidative stress of ovaries and GCs and the function of LINC00958/miR-484/SESN2 axis in mitochondrial function and mitochondria-related apoptosis.


Subject(s)
Granulosa Cells , MicroRNAs , Animals , Female , Mice , Apoptosis/genetics , Down-Regulation , Granulosa Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Ovarian Diseases , Oxidative Stress
9.
Environ Int ; 170: 107601, 2022 12.
Article in English | MEDLINE | ID: mdl-36332493

ABSTRACT

Bioactive organic compounds (BOCs) contained in bio-stabilized products of waste activated sludge (WAS) have attracted considerable attention, as they can enhance the fertilizing effect of WAS in land applications. This study investigated the molecular composition and plant-growth-promoting mechanisms of various BOCs in the bio-stabilized products of WAS. After stepwise fractionation, aerobic composting sludge (ACS) and anaerobic digestion sludge (ADS) were chemically fractioned into five subcomponents, namely dissolved organic matter (DOM) (C1), weakly interacted organic matter (OM) (C2), metal-bonded OM (C3), NaOH-extracted OM (C4), and strongly interacted OM (C5), in sequence. The results showed that fatty acids and carboxylic acid (CAs) present in ACS C2 promoted plant growth and enhanced the ability of plants against stresses by upregulating pathways related to "carbohydrate metabolism," "lipid metabolism," "amino acid metabolism," and "phenylpropanoid biosynthesis." However, in ACS C4, plenty of amino acids could promote plant growth via upregulating "carbohydrate metabolism" and "amino acid metabolism" pathways. As an important precursor, aromatic amino acids inside ACS C4 also stimulated the production of indoleacetic acids. In ADS C1, amino sugar and phytohormone were the major BOCs causing the up-regulation of "carbohydrate metabolism" and AAA catabolism in "amino acid metabolism" pathways. CAs enriched in ADS C2 stimulated plant growth through "amino acid metabolism" pathway. In summary, alkali extraction can recycle a large proportion of BOCs with low environmental risk from the bio-stabilization products of WAS. The results from this study provide scientific guidance for safe and value-added resource utilization of bio-stabilization products of WAS in land applications.


Subject(s)
Amino Acids , Sewage , Carbohydrates
10.
Bioresour Technol ; 364: 128141, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36257519

ABSTRACT

Using Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular reaction network analysis, this study investigated molecular transformation of dissolved organic matter (DOM) and formation pathway of humic substances (HS) in dredged sludge during aerobic composting. The results showed that macromolecular N-containing compounds in dredged sludge are abundantly transformed into unsaturated and aromatic oxygenated compounds, exhibiting physicochemical properties similar to those of humus. Especially, N-containing compounds with one nitrogen atom are susceptible to oxidative deamination. Furthermore, assemblages of reactive fragments (e.g., -C7H8O2, -C10H12O2, -C2H2O2, and -C4H6O2) were identified as potential precursors to HS formed by the following reactions: starting with protein deamination and desulfurization, lignin delignification cascaded, finally decarbonylation occurred. This work provides novel insight for optimizing the process of stabilization and humification of dredged sludge.

11.
Redox Biol ; 57: 102492, 2022 11.
Article in English | MEDLINE | ID: mdl-36182806

ABSTRACT

Both genetic and microenvironmental detrimental factors are involved in ovarian dysfunction, leading to the increasing rate of involuntary childlessness in recent years. Oxidative stress (OS), which is characterized by the imbalance of redox system with redundant reactive oxygen species (ROS) overwhelming the antioxidant defense, is regarded as one of the culprits of ovarian dysfunction. OS causes damage to various types of ovarian cells including granulosa cells (GCs), jeopardizing the ovarian microenvironment, disturbing follicular development and participating in various female reproductive disorders. However, the specific molecular pathological mechanisms underlying this process have not been fully elucidated. In this study, we found that 3-nitropropionic acid (3-NP) treatment led to significant IGF2BP1 downregulation via, at least partially, inducing ROS overproduction. IGF2BP1 regulates GCs viability, proliferation, cell cycle and cellular senescence by enhancing MDM2 mRNA stability in an m6A-dependant manner. IGF2BP1 overexpression partially rescued 3-NP induced GCs damages, while ectopically expressed MDM2 alleviated both 3-NP or IGF2BP1-knockdown induced GCs dysfunction. These results reveal an epigenetic molecular mechanism underlying OS-related GCs disorders, which may help to establish a novel potential clinical marker for predicting the GCs status as well as the follicular developmental potential.


Subject(s)
Granulosa Cells , Oxidative Stress , Female , Humans , Reactive Oxygen Species/metabolism , Granulosa Cells/metabolism , Antioxidants/metabolism , Ovary/metabolism , Apoptosis
12.
Chem Asian J ; 11(16): 2240-5, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27411946

ABSTRACT

A biocompatible probe for specific glucose recognition is based on photoinitiated boronate affinity-molecular imprinted polymers (BA-MIPs). The unique pre-self-assembly between glucose and boronic acids creates glucose-specific memory cavities in the BA-MIPs coating. As a result, the binding constant toward glucose was enhanced by three orders of magnitude. The BA-MIPs probe was applied to glucose determination in serum and urine and implanted into plant tissues for low-destructive and long-term in vivo continuous glucose monitoring.


Subject(s)
Biocompatible Materials/chemistry , Boronic Acids/chemistry , Glucose/analysis , Molecular Imprinting , Molecular Probes/chemistry , Molecular Structure , Particle Size , Polymers/chemistry , Surface Properties
13.
Sci Rep ; 5: 15682, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26498499

ABSTRACT

Nanotechnology permits broad advances in agriculture. However, as it is still at a relatively early stage of development, the potential risks remain unclear. Herein, for the first time, we reveal the following: 1) the impact of multi-walled carbon nanotubes (MWCNTs) on the accumulation/depuration behaviors of contaminants in crop, mustard (Brassica juncea), and 2) the permeability and transportability of MWCNTs in intact mature mustard plants. Using an in vivo sampling technique, the kinetic accumulation/depuration processes of several contaminants in mustard plans exposed to MWCNTs were traced, and an enhancement of contaminant accumulation in living plants was observed. Meanwhile, we observed that the MWCNTs permeated into the roots of intact living plants (three months old) and were then transported to the upper organs under the force of transpiration steam. This study demonstrated that MWCNTs can act as contaminant carriers and be transported to the edible parts of crops.


Subject(s)
Mustard Plant/metabolism , Nanotubes, Carbon/chemistry , Cosmetics/analysis , Cosmetics/chemistry , Cosmetics/metabolism , Gas Chromatography-Mass Spectrometry , Kinetics , Microscopy, Electron, Transmission , Mustard Plant/chemistry , Mustard Plant/growth & development , Permeability , Pesticides/analysis , Pesticides/chemistry , Pesticides/metabolism , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Spectrum Analysis, Raman
14.
Chemosphere ; 138: 584-91, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26210023

ABSTRACT

As emerging contaminants, synthetic musks (SMs) cause worldwide concern due to their bioaccumulation in biota. However, the environmental fates of SMs in biota are poorly understood. Here, for the first time, the uptake and elimination behaviors, as well as the transferable capacities, of SMs in living edible biota (fish and aloe) were revealed. Fish muscle was approximately 100-2000 times more efficient in accumulating SMs than was aloe leaf, and nitro musks showed a higher bioaccumulation potential than did polycyclic musks in biota. In addition, the transferable capabilities of SMs by root uptake in aloe were poor. This investigation also showed that both nitro musks and polycyclic musks that accumulated in biota exhibited excellent elimination rates in clean water, and the elimination rates were greater than 78% and 80% in fish (3 d) and aloe (2 d), respectively. Furthermore, the calculated results suggest that SMs might act as chemosensitizers and enhance the accumulation of normally excluded toxicants in biota in a real aquatic environment.


Subject(s)
Aloe/chemistry , Environmental Monitoring , Environmental Pollutants/analysis , Fishes , Perfume/analysis , Animals , Environmental Pollutants/chemical synthesis , Perfume/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...