Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Radiol ; 97(1157): 1029-1037, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38460184

ABSTRACT

OBJECTIVES: Since neither abdominal pain nor pancreatic enzyme elevation is specific for acute pancreatitis (AP), the diagnosis of AP in patients with pancreaticobiliary maljunction (PBM) may be challenging when the pancreas appears normal or nonobvious on CT. This study aimed to develop a quantitative radiomics-based nomogram of pancreatic CT for identifying AP in children with PBM who have nonobvious findings on CT. METHODS: PBM patients with a diagnosis of AP evaluated at the Children's Hospital of Soochow University from June 2015 to October 2022 were retrospectively reviewed. The radiological features and clinical factors associated with AP were evaluated. Based on the selected variables, multivariate logistic regression was used to construct clinical, radiomics, and combined models. RESULTS: Two clinical parameters and 6 radiomics characteristics were chosen based on their significant association with AP, as demonstrated in the training (area under curve [AUC]: 0.767, 0.892) and validation (AUC: 0.757, 0.836) datasets. The radiomics-clinical nomogram demonstrated superior performance in both the training (AUC, 0.938) and validation (AUC, 0.864) datasets, exhibiting satisfactory calibration (P > .05). CONCLUSIONS: Our radiomics-based nomogram is an accurate, noninvasive diagnostic technique that can identify AP in children with PBM even when CT presentation is not obvious. ADVANCES IN KNOWLEDGE: This study extracted imaging features of nonobvious pancreatitis. Then it developed and evaluated a combined model with these features.


Subject(s)
Nomograms , Pancreaticobiliary Maljunction , Pancreatitis , Tomography, X-Ray Computed , Humans , Pancreatitis/diagnostic imaging , Child , Female , Male , Retrospective Studies , Tomography, X-Ray Computed/methods , Pancreaticobiliary Maljunction/diagnostic imaging , Adolescent , Child, Preschool , Pancreas/diagnostic imaging , Pancreas/abnormalities , Acute Disease , Radiomics
2.
BMC Pediatr ; 23(1): 427, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37633885

ABSTRACT

BACKGROUND: Pancreaticobiliary maljunction (PBM) is a congenital defect, with risk of developing various pancreaticobiliary and hepatic complications. The presentations of PBM in children and adults are believed to be different, but studies on PBM children of different age groups are limited. This study was to evaluate clinicopathologic characteristics and outcomes in PBM children of different ages. METHODS: A total of 166 pediatric patients with PBM were reviewed retrospectively. Clinicopathological, imaging, laboratory, surgical, and follow-up data were collected and analyzed. The patients were divided into three age groups, namely, group A (< 1 year, n = 31), group B (1-3 years, n = 63), and group C (> 3 years, n = 72). RESULTS: The major clinical manifestation was jaundice in group A and abdominal pain and vomiting in groups B and C. Acute pancreatitis was more often seen in group C than group A. The length of common channel was significantly longer in group C than group A, while the maximum diameter of common bile duct in group C was smaller than that in group A. Cholangitis and cholecystitis were more commonly performed in groups B and C, while hepatic fibrosis in group A. Whether preoperatively or postoperatively, group C was more likely to have elevated serum amylase, while groups A and B were more likely to present with abnormal liver function indicators, including the increase of aspartate transaminase, alanine transaminase, and gamma-glutamyl transpeptidase. CONCLUSION: Presentation of PBM varies among different pediatric age groups, thus suggesting that targeted management should be carried out according to these differences.


Subject(s)
Pancreaticobiliary Maljunction , Pancreatitis , Adult , Humans , Child , Acute Disease , Retrospective Studies , Abdominal Pain
3.
BMC Pediatr ; 23(1): 262, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37226234

ABSTRACT

BACKGROUND: To identify radiomic features that can predict the pathological type of neuroblastic tumor in children. METHODS: Data on neuroblastic tumors in 104 children were retrospectively analyzed. There were 14 cases of ganglioneuroma, 24 cases of ganglioneuroblastoma, and 65 cases of neuroblastoma. Stratified sampling was used to randomly allocate the cases into the training and validation sets in a ratio of 3:1. The maximum relevance-minimum redundancy algorithm was used to identify the top 10 of two clinical features and 851 radiomic features in portal venous-phase contrast-enhanced computed tomography images. Least absolute shrinkage and selection operator regression was used to classify tumors in two binary steps: first as ganglioneuroma compared to the other two types, then as ganglioneuroblastoma compared to neuroblastoma. RESULTS: Based on 10 clinical-radiomic features, the classifier identified ganglioneuroma compared to the other two tumor types in the validation dataset with sensitivity of 100.0%, specificity of 81.8%, and an area under the receiver operating characteristic curve (AUC) of 0.875. The classifier identified ganglioneuroblastoma versus neuroblastoma with a sensitivity of 83.3%, a specificity of 87.5%, and an AUC of 0.854. The overall accuracy of the classifier across all three types of tumors was 80.8%. CONCLUSION: Radiomic features can help predict the pathological type of neuroblastic tumors in children.


Subject(s)
Ganglioneuroblastoma , Ganglioneuroma , Neuroblastoma , Humans , Child , Ganglioneuroblastoma/diagnostic imaging , Ganglioneuroma/diagnostic imaging , Retrospective Studies , Neuroblastoma/diagnostic imaging , Tomography, X-Ray Computed
4.
Surg Today ; 53(12): 1352-1362, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37160428

ABSTRACT

PURPOSE: To develop machine learning (ML) models to predict the surgical risk of children with pancreaticobiliary maljunction (PBM) and biliary dilatation. METHODS: The subjects of this study were 157 pediatric patients who underwent surgery for PBM with biliary dilatation between January, 2015 and August, 2022. Using preoperative data, four ML models were developed, including logistic regression (LR), random forest (RF), support vector machine classifier (SVC), and extreme gradient boosting (XGBoost). The performance of each model was assessed via the area under the receiver operator characteristic curve (AUC). Model interpretations were generated by Shapley Additive Explanations. A nomogram was used to validate the best-performing model. RESULTS: Sixty-eight patients (43.3%) were classified as the high-risk surgery group. The XGBoost model (AUC = 0.822) outperformed the LR (AUC = 0.798), RF (AUC = 0.802) and SVC (AUC = 0.804) models. In all four models, enhancement of the choledochal cystic wall and an abnormal position of the right hepatic artery were the two most important features. Moreover, the diameter of the choledochal cyst, bile duct variation, and serum amylase were selected as key predictive factors by all four models. CONCLUSIONS: Using preoperative data, the ML models, especially XGBoost, have the potential to predict the surgical risk of children with PBM and biliary dilatation. The nomogram may provide surgeons early warning to avoid intraoperative iatrogenic injury.


Subject(s)
Choledochal Cyst , Pancreaticobiliary Maljunction , Humans , Child , Pancreatic Ducts/surgery , Dilatation , Bile Ducts , Choledochal Cyst/surgery , Machine Learning
5.
Pediatr Surg Int ; 39(1): 158, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36959375

ABSTRACT

PURPOSE: This study aimed to develop a prediction model to identify risk factors for post-operative acute pancreatitis (POAP) in children with pancreaticobiliary maljunction (PBM) by pre-operative analysis of patient variables. METHODS: Logistic regression (LR), support vector machine (SVM), and extreme gradient boosting (XGBoost) models were established using the prospectively collected databases of patients with PBM undergoing surgery which was reviewed in the period comprised between August 2015 and August 2022, at the Children's Hospital of Soochow University. Primarily, the area beneath the receiver-operating curves (AUC), accuracy, sensitivity, and specificity were used to evaluate the model performance. The model was finally validated using the nomogram and clinical impact curve. RESULTS: In total, 111 children with PBM met the inclusion criteria, and 21 children suffered POAP. In the validation dataset, LR models showed the highest performance. The risk nomogram and clinical effect curve demonstrated that the LR model was highly predictive. CONCLUSION: The prediction model based on the LR with a nomogram could be used to predict the risk of POAP in patients with PBM. Protein plugs, age, white blood cell count, and common bile duct diameter were the most relevant contributing factors to the models.


Subject(s)
Pancreaticobiliary Maljunction , Pancreatitis , Humans , Child , Pancreatitis/diagnosis , Pancreatitis/etiology , Pancreatitis/surgery , Acute Disease , Retrospective Studies , Machine Learning
6.
J Magn Reson Imaging ; 58(2): 605-617, 2023 08.
Article in English | MEDLINE | ID: mdl-36583731

ABSTRACT

BACKGROUND: Preoperative diagnosis of liver fibrosis in children with pancreaticobiliary maljunction (PBM) is needed to guide clinical decision-making and improve patient prognosis. PURPOSE: To develop and validate an MR-based radiomics-clinical nomogram for identifying liver fibrosis in children with PBM. STUDY TYPE: Retrospective. POPULATION: A total of 136 patients with PBM from two centers (center A: 111 patients; center B: 25 patients). Cases from center A were randomly divided into training (74 patients) and internal validation (37 patients) sets. Cases from center B were assigned to the external validation set. Liver fibrosis was determined by histopathological examination. FIELD STRENGTH/SEQUENCE: A 3.0 T (two vendors)/T1-weighted imaging and T2-weighted imaging. ASSESSMENT: Clinical factors associated with liver fibrosis were evaluated. A total of 3562 radiomics features were extracted from segmented liver parenchyma. Maximum relevance minimum redundancy and least absolute shrinkage and selection operator were recruited to screen radiomics features. Based on the selected variables, multivariate logistic regression was used to construct the clinical model, radiomics model, and combined model. The combined model was visualized as a nomogram to show the impact of the radiomics signature and key clinical factors on the individual risk of developing liver fibrosis. STATISTICAL TESTS: Mann-Whitney U and chi-squared tests were used to compare clinical factors. P < 0.05 was considered statistically significant in the final models. RESULTS: Two clinical factors and four radiomics features were selected as they were associated with liver fibrosis in the training (AUC, 0.723, 0.927), internal validation (AUC, 0.718, 0.885), and external validation (AUC, 0.737, 0.865) sets. The radiomics-clinical nomogram yielded the best performance in the training (AUC, 0.977), internal validation (AUC, 0.921), and external validation (AUC, 0.878) sets, with good calibration (P > 0.05). DATA CONCLUSION: Our radiomic-based nomogram is a noninvasive, accurate, and preoperative diagnostic tool that is able to detect liver fibrosis in PBM children. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Pancreaticobiliary Maljunction , Humans , Child , Retrospective Studies , Magnetic Resonance Imaging/methods , Nomograms , Liver Cirrhosis/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...