Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 35(22)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470062

ABSTRACT

In this study, S-CCO@Co(OH)2('CCO' representing CuCo2O4/Cu2O; 'S-'representing sulfur doping) was synthesized by hydrothermal method followed by electrodeposition. The multiple effects of S doping were studied by S doping and constructing 3D core-shell structure. S doping induced the reduction of Cu2+and Co3+to Cu+and Co2+, respectively. Also, S partially replaces O and creates oxygen vacancies, which increases a number of active sites for the redox reaction enhancing the redox reaction activity. After the electrodeposition, S-Co bond is formed between the Co(OH)2shell and the S-CCO core, which suggests a synergistic effect between S doping and core-shell structure. The formation of S-Co bond is conducive to electron and ion transport, thus improving electrochemical performance. After modification, the specific capacitance of S-CCO@Co(OH)2is 4.28 times higher than CCO, up to 1730 Fg-1. Furthermore, the assembled S-CCO@Co(OH)2//activated carbon supercapacitor exhibits an energy density of 83.89 Whkg-1at 848.81 Wkg-1and a retention rate of 98.48% after 5000 charge and discharge cycles. Therefore, S doping and its mutual effect with the utilization of the core-shell structure considerably enhanced the electrochemical performance of the CCO-based electrodes, endowing its potential in further application.

2.
Dig Dis ; 41(6): 835-844, 2023.
Article in English | MEDLINE | ID: mdl-37607491

ABSTRACT

INTRODUCTION: The pathogenesis of epigastric pain in functional dyspepsia (FD) is complex. The study aims to explore the effect of sleep improvement on this symptom. METHODS: In total, 120 patients with FD-associated epigastric pain and insomnia were randomly divided into experimental and control groups using the envelope method. After applying the exclusion criteria, 107 patients were enrolled in the experimental (56 patients) and control (51 patients) groups. Insomnia was graded according to the Pittsburgh Sleep Quality Index (PSQI). In the experimental group, eszopiclone 3 mg, eszopiclone 3 mg + estazolam 1 mg, and eszopiclone 3 mg + estazolam 2 mg were given to patients with mild, moderate, and severe insomnia, respectively. In the control group, patients were given 1, 2, or 3 tablets of vitamin B complex. Patient sleep quality was monitored with Sleepthing. Epigastric pain was evaluated with a Numeric Rating Scale. The serum levels of IL-1ß, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay. Pain scores, sleep parameters, and serum levels of inflammatory mediators were compared before and after treatment. RESULTS: After treatment, the pain scores, sleep parameters, and TNF-α and IL-6 levels in the experimental group were significantly lower than those in the control group (p < 0.05). PSQI insomnia scores were significantly associated with pain scores, IL-6, and TNF-α (p < 0.05) but not in IL-8 and IL-1ß levels (p > 0.05) among the three groups. CONCLUSIONS: Improving sleep with eszopiclone and/or estazolam alleviates FD-associated epigastric pain, possibly by inhibiting related downstream transmission pathways and reducing the release of inflammatory mediators.


Subject(s)
Dyspepsia , Sleep Initiation and Maintenance Disorders , Humans , Dyspepsia/complications , Dyspepsia/drug therapy , Sleep Initiation and Maintenance Disorders/complications , Sleep Initiation and Maintenance Disorders/drug therapy , Eszopiclone , Estazolam , Tumor Necrosis Factor-alpha , Interleukin-6 , Inflammation Mediators , Interleukin-8 , Sleep , Abdominal Pain/drug therapy , Abdominal Pain/etiology , Treatment Outcome
3.
Chemosphere ; 308(Pt 1): 136189, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36037956

ABSTRACT

In the present study, we investigate the regeneration efficiency of Rhodamine B (RhB)-saturated granular activated carbon (GAC) in an electrochemical regeneration system by using a 9,10-anthraquinone-2-sulfonic acid/polypyrrole modified graphite plate (AQS/PPy-GP) cathode. The response surface methodology based on the Box-Behnken design (RSM-BBD) approach was used to optimize regeneration parameters, whereby the optimum condition of the independent variables was as follows: applied current = 155 mA, concentration of supporting electrolyte = 0.13 M, and regeneration time = 7 h. The electrochemical regeneration system with the AQS/PPy-GP electrode achieved high regeneration efficiency and significantly reduced energy consumption. H2O2 concentration generated in the electrolysis system was notably increased, and the time of complete degradation of organics was shortened by 25% compared to the electrode without modification. The mechanism for RhB degradation was proposed as AQS acting as a catalyst to promote the formation of H2O2. The regeneration study showed that AQS/PPy-GP cathode had appreciable reusability for GAC regeneration with a regeneration efficiency of 76.6% after 8 regeneration cycles. In summary, the electrochemical regeneration based on AQS/PPy-GP cathode would have practical industrial applications in treating spent activated carbons.


Subject(s)
Graphite , Anthraquinones , Charcoal , Electrodes , Hydrogen Peroxide , Polymers , Pyrroles
4.
Nanotechnology ; 32(34)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34010828

ABSTRACT

Novel core-shell nanostructure electrodes benefit from the excellent properties of their constituent materials, as well as the synergy between them. However, it is challenging to fabricate such structures efficiently. In this study, NiSe nanorods were fabricated using Ni foam as the conductive substrate and reactant via a one-step hydrothermal process, and Ni(OH)2nanosheets were coated on the surface of the nanorods via one-step electrodeposition. The effect of the structure and morphology on the properties of the material was explored using scanning electron microscopy, x-ray diffraction, and electrochemical technology. The obtained core-shell NiSe/Ni(OH)2exhibited an areal capacity of 1.89 mAh cm-2at a current density of 5 mA cm-2. The assembled NiSe/Ni(OH)2//AC hybrid supercapacitor exhibited excellent energy and power densities, indicating that NiSe/Ni(OH)2has great potential for use as a battery-type electrode in energy storage systems.

5.
Nanotechnology ; 32(34)2021 May 31.
Article in English | MEDLINE | ID: mdl-33503607

ABSTRACT

A flower-like structured electrode material of Co3O4@Ni-Co layered double hydroxide (LDH) grown on Ni foam (Co3O4@Ni-Co LDH/NF) was prepared via anin situgrowth, annealing and electrodeposition process. The Co3O4@Ni-Co LDH/NF electrode was prepared with the optimized conditions of annealing temperature 300 °C, deposition time 20 min and Ni/Co ratio 1:1. The results showed that the as-prepared electrode material exhibited an excellent specific capacitance and great cycling stability. Furthermore, an quasi-solid-state supercapacitor was assembled using the prepared Co3O4@Ni-Co LDH/NF as the positive electrode and activated carbon on Ni foam (AC/NF) as the negative electrode. The as-assembled device presented a high energy density and power density.

6.
Nanotechnology ; 32(14): 145404, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33296893

ABSTRACT

The ZnCo2O4@NiCo2S4@PPy core-shell nanosheets material is prepared by directly growing leaf-like ZnCo2O4 nanosheets derived from the metal-organic framework (MOF) on Ni foam (NiF) via chemical bath deposition and annealing methods and then combining with NiCo2S4 and PPy via electrodeposition methods. The special core-shell structure formed by MOF-derived ZnCo2O4, NiCo2S4 and PPy creates a bi-interface, which could significantly promote the contact between electrode and electrolyte, provide more active sites and accelerate electron/ion transfer. And the combination of these three materials also produces a strong synergistic effect, which could further improve the capacitive performance of the electrode. Therefore, the ZnCo2O4@NiCo2S4@PPy/NiF electrode exhibits the maximum areal capacitance (3.75 F cm-2) and specific capacitance (2507.0 F g-1) at 1 mA cm-2 and 0.5 A g-1, respectively. Moreover, its capacitance retention rate is still 83.2% after 5000 cycles. In addition, a coin-type hybrid supercapacitor is assembled and displays a high energy density of 44.15 Wh kg-1 and good cycling performance.

7.
Chemosphere ; 206: 107-114, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29734093

ABSTRACT

A dynamic model of semi-batch three-dimensional electrode reactor was established based on the limiting current density, Faraday's law, mass balance and a series of assumptions. Semi-batch experiments of phenol degradation were carried out in a three-dimensional electrode reactor packed with activated carbon under different conditions to verify the model. The factors such as the current density, the electrolyte concentration, the initial pH value, the flow rate of organic and the initial organic concentration were examined to know about the pollutant degradation in the three-dimensional electrode reactor. The various concentrations and logarithm of concentration of phenol with time were compared with the dynamic model. It was shown that the calculated data were in good agreement with experimental data in most cases.


Subject(s)
Electrodes/statistics & numerical data , Environmental Pollutants/chemistry
8.
Best Pract Res Clin Gastroenterol ; 31(6): 669-673, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29566910

ABSTRACT

Autoimmune hepatitis (AIH) is a severe inflammatory liver disease. The underlying mechanisms remain unclear, but recent studies provided new perspectives on altered intestinal microbiome and permeability in AIH animal models and patients, highlighting gut-liver crosstalk in the pathogenesis of AIH. Transgenic AIH mice carrying HLA-DR3 showed reduced diversity and total load of gut microbiota. Germ-free mice are resistant to concanavalin A-induced liver injury, whereas enterogenouss antigens induce the activation of natural killer T cells participating in concanavalin A-induced liver injury, supporting the close relationship between microbiota and AIH. Moreover, 'molecular mimicry' provides a plausible interpretation of the immune reactions between microorganic antigens and liver autoantigens, for instance, cytochrome P4502D6, the target of cross-reactivity between virus and self. Nevertheless, direct evidence for the intestinal microbiome and permeability in AIH is still limited. The relationship between AIH susceptibilities and an intestinal microbiome shaped by drugs, diets or genes needs further study.


Subject(s)
Gastrointestinal Microbiome/immunology , Hepatitis, Autoimmune/immunology , Animals , Hepatitis, Autoimmune/pathology , Humans
9.
Environ Sci Pollut Res Int ; 23(3): 2873-81, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26467253

ABSTRACT

In the present study, magnetic seeding flocculation was applied to remove copper (200 mg/L) and turbidity (180 mg/L) from simulated microetch copper waste. Fe3O4 particles (40 to 1600 mesh) were used as magnetic seeds. Poly-aluminum chloride (PAC) and anionic polyacrylamide (PAM) were added as coagulant and flocculant, respectively. The effect of operating factors, such as the dosages of the coagulant and flocculant, initial pH of the wastewater, and dosage and size of the magnetic seeds, on copper and turbidity removal was systematically investigated. In addition, settling speed, floc-size distribution, and volume of sludge were measured with and without the addition of magnetic seeds to compare the efficiency of magnetic seeding to that of traditional flocculation. The results indicated that the highest settling speed, the largest floc size, and the smallest volume of sludge were obtained simultaneously when the dosage and size of magnetic seeds were 2.0 g/L and 300­400 mesh, respectively. High removal efficiencies of 98.53 and 94.72 % for copper and turbidity, respectively, were also achieved under this condition; values that are 4.11 and 0.61 % higher, respectively, than those found in traditional flocculation. The high performance might be attributed to efficient collision of particles and slightly moderate vortex centrifugal force of inertia among the magnetic seeds, which could produce larger magnetic flocs with lower moisture.


Subject(s)
Copper/chemistry , Sewage/analysis , Waste Disposal, Fluid/methods , Water Movements , Flocculation , Magnetics
10.
Saudi J Biol Sci ; 21(5): 450-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25313280

ABSTRACT

Hydrogen sulfide (H2S) is a major malodorous compound emitted from wastewater treatment plants. In this study, the performance of three pilot-scale immobilized-cell biotrickling filters (BTFs) spacked with combinations of bamboo charcoal and ceramsite in different ratios was investigated in terms of H2S removal. Extensive tests were performed to determine the removal characteristics, pressure drops, metabolic products, and removal kinetics of the BTFs. The BTFs were operated in continuous mode at low loading rates varying from 0.59 to 5.00 g H2S m(-3) h(-1) with an empty bed retention time (EBRT) of 25 s. The removal efficiency (RE) for each BTF was >99% in the steady-state period, and high standards were met for the exhaust gas. It was found that a multilayer BTF had a slight advantage over a perfectly mixed BTF for the removal of H2S. Furthermore, an impressive amount >97% of the H2S was eliminated by 10% of packing materials near the inlet of the BTF. The modified Michaelis-Menten equation was adopted to describe the characteristics of the BTF, and K s and V m values for the BTF with pure bamboo charcoal packing material were 3.68 ppmv and 4.26 g H2S m(-3) h(-1), respectively. Both bamboo charcoal and ceramsite demonstrated good performance as packing materials in BTFs for the removal of H2S, and the results of this study could serve as a guide for further design and operation of industrial-scale systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...