Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Int J Surg ; 110(7): 4320-4328, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38477158

ABSTRACT

Upper urinary tract stones are a common urological disease that can be treated by flexible ureteroscopy (FURS) through the natural urinary tract, in addition to extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy. The advantages of FURS are less trauma, faster recovery, and fewer complications, while its disadvantages include poor results of lithotripsy and stone extraction when dealing with larger stones, and prolonged operation time. Over the last two decades, the emergence of new technologies such as FURS combined with negative pressure suction, robot-assisted FURS, and artificially intelligent FURS, coupled with improvements in laser technology (the use of thulium fiber lasers and the invention of single-use flexible ureteroscopes (su-fURS) suitable for primary level application, have significantly increased the global adoption of FURS. This surge in usage holds a promising future in clinical application, benefiting a growing number of patients with renal calculi. Accompanied by changes in technical concepts and therapeutic modalities, the scope of indications for FURS is broadening, positioning it as a potential primary choice for urolithiasis treatment in the future. This review outlines the progress in employing FURS for the treatment of renal calculi in order to generate insights for further research.


Subject(s)
Kidney Calculi , Ureteroscopes , Ureteroscopy , Humans , Kidney Calculi/therapy , Kidney Calculi/surgery , Ureteroscopy/instrumentation , Lithotripsy/methods , Lithotripsy/instrumentation
2.
Comput Methods Programs Biomed ; 221: 106770, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35640389

ABSTRACT

BACKGROUND AND OBJECTIVE: Prostate cancer is the most common cancer of the male reproductive system. With the development of medical imaging technology, magnetic resonance images (MRI) have been used in the diagnosis and treatment of prostate cancer because of its clarity and non-invasiveness. Prostate MRI segmentation and diagnosis experience problems such as low tissue boundary contrast. The traditional segmentation method of manually drawing the contour boundary of the tissue cannot meet the clinical real-time requirements. How to quickly and accurately segment the prostate tumor has become an important research topic. METHODS: This paper proposes a prostate tumor diagnosis based on the deep learning network PSP-Net+VGG16. The deep convolutional neural network segmentation method based on the PSP-Net constructs a atrous convolution residual structure model extraction network. First, the three-dimensional prostate MRI is converted to two-dimensional image slices, and then the slice input of the two-dimensional image is trained based on the PSP-Net neural network; and the VGG16 network is used to analyze the region of interest and classify prostate cancer and normal prostate. RESULTS: According to the experimental results, the segmentation method based on the deep learning network PSP-Net is used to identify the data set samples. The segmentation accuracy is close to the Dice similarity coefficient and Hausdorff distance, and even exceeds the traditional prostate image segmentation method. The Dice index reached 91.3%, and the technique is superior in speed of processing. The predicted tumor markers are very close to the actual markers manually by clinicians; the classification accuracy and recognition rates of prostate MRI based on VGG16 are as high as 87.95% and 87.33%, and the accuracy rate and recall rate of the network model are relatively balanced. The area under curve index is also higher than other models, with good generalization ability. CONCLUSION: Experiments show that prostate cancer diagnosis based on the deep learning network PSP-Net+VGG16 is superior in accuracy and processing time compared to other algorithms, and can be well applied to clinical prostate tumor diagnosis.


Subject(s)
Deep Learning , Prostatic Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Neural Networks, Computer , Prostate/diagnostic imaging , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
3.
Clinics (Sao Paulo) ; 71(1): 1-4, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26872076

ABSTRACT

OBJECTIVE: Evaluate the efficiency and safety of bipolar plasma vaporization using plasma-cutting and plasma-loop electrodes for the treatment of posterior urethral stricture. Compare the outcomes following bipolar plasma vaporization with conventional cold-knife urethrotomy. METHODS: A randomized trial was performed to compare patient outcomes from the bipolar and cold-knife groups. All patients were assessed at 6 and 12 months postoperatively via urethrography and uroflowmetry. At the end of the first postoperative year, ureteroscopy was performed to evaluate the efficacy of the procedure. The mean follow-up time was 13.9 months (range: 12 to 21 months). If re-stenosis was not identified by both urethrography and ureteroscopy, the procedure was considered "successful". RESULTS: Fifty-three male patients with posterior urethral strictures were selected and randomly divided into two groups: bipolar group (n=27) or cold-knife group (n=26). Patients in the bipolar group experienced a shorter operative time compared to the cold-knife group (23.45±7.64 hours vs 33.45±5.45 hours, respectively). The 12-month postoperative Qmax was faster in the bipolar group than in the cold-knife group (15.54±2.78 ml/sec vs 18.25±2.12 ml/sec, respectively). In the bipolar group, the recurrence-free rate was 81.5% at a mean follow-up time of 13.9 months. In the cold-knife group, the recurrence-free rate was 53.8%. CONCLUSIONS: The application of bipolar plasma-cutting and plasma-loop electrodes for the management of urethral stricture disease is a safe and reliable method that minimizes the morbidity of urethral stricture resection. The advantages include a lower recurrence rate and shorter operative time compared to the cold-knife technique.


Subject(s)
Catheter Ablation/methods , Cystoscopy/methods , Urethral Stricture/surgery , Aged , Electrodes , Follow-Up Studies , Humans , Length of Stay/statistics & numerical data , Male , Middle Aged , Operative Time , Perioperative Period , Prospective Studies , Recurrence , Treatment Outcome
4.
Clinics ; 71(1): 1-4, Jan. 2016. tab, graf
Article in English | LILACS | ID: lil-771952

ABSTRACT

OBJECTIVE: Evaluate the efficiency and safety of bipolar plasma vaporization using plasma-cutting and plasma-loop electrodes for the treatment of posterior urethral stricture. Compare the outcomes following bipolar plasma vaporization with conventional cold-knife urethrotomy. METHODS: A randomized trial was performed to compare patient outcomes from the bipolar and cold-knife groups. All patients were assessed at 6 and 12 months postoperatively via urethrography and uroflowmetry. At the end of the first postoperative year, ureteroscopy was performed to evaluate the efficacy of the procedure. The mean follow-up time was 13.9 months (range: 12 to 21 months). If re-stenosis was not identified by both urethrography and ureteroscopy, the procedure was considered “successful”. RESULTS: Fifty-three male patients with posterior urethral strictures were selected and randomly divided into two groups: bipolar group (n=27) or cold-knife group (n=26). Patients in the bipolar group experienced a shorter operative time compared to the cold-knife group (23.45±7.64 hours vs 33.45±5.45 hours, respectively). The 12-month postoperative Qmax was faster in the bipolar group than in the cold-knife group (15.54±2.78 ml/sec vs 18.25±2.12 ml/sec, respectively). In the bipolar group, the recurrence-free rate was 81.5% at a mean follow-up time of 13.9 months. In the cold-knife group, the recurrence-free rate was 53.8%. CONCLUSIONS: The application of bipolar plasma-cutting and plasma-loop electrodes for the management of urethral stricture disease is a safe and reliable method that minimizes the morbidity of urethral stricture resection. The advantages include a lower recurrence rate and shorter operative time compared to the cold-knife technique.


Subject(s)
Aged , Humans , Male , Middle Aged , Catheter Ablation/methods , Cystoscopy/methods , Urethral Stricture/surgery , Electrodes , Follow-Up Studies , Length of Stay/statistics & numerical data , Operative Time , Perioperative Period , Prospective Studies , Recurrence , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...