Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 866, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009734

ABSTRACT

Mycobacteria adapt to infection stresses by entering a reversible non-replicating persistence (NRP) with slow or no cell growth and broad antimicrobial tolerance. Hypoxia and nutrient deprivation are two well-studied stresses commonly used to model the NRP, yet little is known about the molecular differences in mycobacterial adaptation to these distinct stresses that lead to a comparable NRP phenotype. Here we performed a multisystem interrogation of the Mycobacterium bovis BCG (BCG) starvation response, which revealed a coordinated metabolic shift away from the glycolysis of nutrient-replete growth to depletion of lipid stores, lipolysis, and fatty acid ß-oxidation in NRP. This contrasts with BCG's NRP hypoxia response involving a shift to cholesterol metabolism and triglyceride storage. Our analysis reveals cryptic metabolic vulnerabilities of the starvation-induced NRP state, such as their newfound hypersensitivity to H2O2. These observations pave the way for developing precision therapeutics against these otherwise drug refractory pathogens.


Subject(s)
Adaptation, Physiological , Mycobacterium bovis , Mycobacterium bovis/metabolism , Glycolysis , Metabolic Reprogramming
2.
Nat Commun ; 11(1): 296, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941883

ABSTRACT

Regulation of cellular iron homeostasis is crucial as both iron excess and deficiency cause hematological and neurodegenerative diseases. Here we show that mice lacking iron-regulatory protein 2 (Irp2), a regulator of cellular iron homeostasis, develop diabetes. Irp2 post-transcriptionally regulates the iron-uptake protein transferrin receptor 1 (TfR1) and the iron-storage protein ferritin, and dysregulation of these proteins due to Irp2 loss causes functional iron deficiency in ß cells. This impairs Fe-S cluster biosynthesis, reducing the function of Cdkal1, an Fe-S cluster enzyme that catalyzes methylthiolation of t6A37 in tRNALysUUU to ms2t6A37. As a consequence, lysine codons in proinsulin are misread and proinsulin processing is impaired, reducing insulin content and secretion. Iron normalizes ms2t6A37 and proinsulin lysine incorporation, restoring insulin content and secretion in Irp2-/- ß cells. These studies reveal a previously unidentified link between insulin processing and cellular iron deficiency that may have relevance to type 2 diabetes in humans.


Subject(s)
Insulin/metabolism , Iron Regulatory Protein 2/metabolism , Iron/metabolism , RNA, Transfer, Lys/metabolism , tRNA Methyltransferases/metabolism , Animals , Cell Line, Tumor , Glucose Intolerance/genetics , Homeostasis , Insulin-Secreting Cells/metabolism , Insulinoma/genetics , Insulinoma/metabolism , Iron Regulatory Protein 2/genetics , Iron-Sulfur Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proinsulin/genetics , Proinsulin/metabolism , RNA, Transfer, Lys/genetics , Rats , Unfolded Protein Response/genetics , tRNA Methyltransferases/genetics
3.
Nucleic Acids Res ; 47(20): e130, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31504804

ABSTRACT

Chemical modification of transcripts with 5' caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps-m7GpppN, m7GpppNm, GpppN, GpppNm, and m2,2,7GpppG-and 5 'metabolite' caps-NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA. Applying CapQuant to RNA from purified dengue virus, Escherichia coli, yeast, mouse tissues, and human cells, we discovered new cap structures in humans and mice (FAD, UDP-Glc, UDP-GlcNAc, and m7Gpppm6A), cell- and tissue-specific variations in cap methylation, and high proportions of caps lacking 2'-O-methylation (m7Gpppm6A in mammals, m7GpppA in dengue virus). While substantial Dimroth-induced loss of m1A and m1Am arose with specific RNA processing conditions, human lymphoblast cells showed no detectable m1A or m1Am in caps. CapQuant accurately captured the preference for purine nucleotides at eukaryotic transcription start sites and the correlation between metabolite levels and metabolite caps.


Subject(s)
Epigenesis, Genetic , RNA Caps/chemistry , RNA Processing, Post-Transcriptional , Sequence Analysis, RNA/methods , Transcriptome , Animals , Cells, Cultured , Dengue Virus , Female , Humans , Mice , Mice, Inbred C57BL , RNA Caps/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Saccharomyces cerevisiae
4.
Dev Cell ; 38(2): 186-200, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27396363

ABSTRACT

N(6)-Methyladenosine (m(6)A) represents the most prevalent internal modification on mRNA and requires a multicomponent m(6)A methyltransferase complex in mammals. How their plant counterparts determine the global m(6)A modification landscape and its molecular link to plant development remain unknown. Here we show that FKBP12 INTERACTING PROTEIN 37 KD (FIP37) is a core component of the m(6)A methyltransferase complex, which underlies control of shoot stem cell fate in Arabidopsis. The mutants lacking FIP37 exhibit massive overproliferation of shoot meristems and a transcriptome-wide loss of m(6)A RNA modifications. We further demonstrate that FIP37 mediates m(6)A RNA modification on key shoot meristem genes inversely correlated with their mRNA stability, thus confining their transcript levels to prevent shoot meristem overproliferation. Our results suggest an indispensable role of FIP37 in mediating m(6)A mRNA modification, which is required for maintaining the shoot meristem as a renewable source for continuously producing all aerial organs in plants.


Subject(s)
Adenosine/analogs & derivatives , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Carrier Proteins/metabolism , Meristem/cytology , Plant Shoots/cytology , RNA, Plant/chemistry , Stem Cells/cytology , Adenosine/chemistry , Adenosine/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Carrier Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Meristem/metabolism , Mutation/genetics , Phenotype , Plant Shoots/metabolism , RNA Processing, Post-Transcriptional , RNA, Plant/genetics , RNA-Binding Proteins , Stem Cells/metabolism
5.
Methods Enzymol ; 560: 29-71, 2015.
Article in English | MEDLINE | ID: mdl-26253965

ABSTRACT

Here we describe an analytical platform for systems-level quantitative analysis of modified ribonucleosides in any RNA species, with a focus on stress-induced reprogramming of tRNA as part of a system of translational control of cell stress response. This chapter emphasizes strategies and caveats for each of the seven steps of the platform workflow: (1) RNA isolation, (2) RNA purification, (3) RNA hydrolysis to individual ribonucleosides, (4) chromatographic resolution of ribonucleosides, (5) identification of the full set of modified ribonucleosides, (6) mass spectrometric quantification of ribonucleosides, (6) interrogation of ribonucleoside datasets, and (7) mapping the location of stress-sensitive modifications in individual tRNA molecules. We have focused on the critical determinants of analytical sensitivity, specificity, precision, and accuracy in an effort to ensure the most biologically meaningful data on mechanisms of translational control of cell stress response. The methods described here should find wide use in virtually any analysis involving RNA modifications.


Subject(s)
Mass Spectrometry/methods , RNA Processing, Post-Transcriptional/genetics , RNA, Transfer/chemistry , Ribonucleosides/chemistry , Protein Biosynthesis/genetics , RNA, Transfer/genetics , Ribonucleosides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...