Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(6): 5053-5063, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35187321

ABSTRACT

The UV/chlorine process, by combining chlorination with UV irradiation, has been recently considered as a highly efficient advanced oxidation process (AOP) technology in water treatment. Nitrobenzene (NB), benzoic acid (BA), and p-chlorobenzoic acid (pCBA) are widely used as model probe compounds in the UV/chlorine system to calculate the second-order rate constants of the specific radical reaction with target contaminates by a competitive kinetics method. A comprehensive understanding of probe compounds' reaction mechanism with reactive radicals is critical for investigation of the UV/chlorine reaction system. Here, we evaluated the radical-mediated reaction kinetics and mechanism of NB, BA, and pCBA in the UV/chlorine process using theoretical calculations and experimental studies. The main reactive radicals •OH, •ClO, and •Cl in the UV/chlorine process for the initial reaction with NB, BA, and pCBA can be explained by H-abstraction and addition pathways. The ΔE 0,≠ values for the •OH reaction with NB, BA, and pCBA were in the range of 5.0-8.0, 3.7-8.2, and 3.4-8.2 kcal mol-1, respectively. The ΔE 0,≠ values for •ClO and •Cl reactions with these three probe compounds were higher than those of •OH, indicating slower •ClO- and •Cl-initiated reactions than that of the •OH-initiated reaction. The theoretically calculated radical-mediated reaction kinetic rate constants (k CP C) for NB, BA, and pCBA were 4.58 × 10-3, 1.28 × 10-2, and 1.6 × 10-2 s-1, respectively, which was consistent with the experimentally determined pseudo-first-order rate constant (k CP RR) in the UV/chlorine process. Interestingly, theoretical calculations showed that •ClO and •Cl played an important role in subsequent reactions of NB-OH radicals, converting to hydroxylated and chlorinated products, which were further confirmed by experimental products' identification. The findings from this study indicated that quantum chemistry calculations provide an effective means to investigate the reaction kinetics and mechanism of chemicals in the UV/chlorine process.

2.
Ecotoxicol Environ Saf ; 229: 113063, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34890985

ABSTRACT

Antibiotic residues and antibiotic resistance have been widely reported in aquatic environments. Hydrolysis of antibiotics is one of the important environmental processes. Here we investigated the hydrolytic transformation of four tetracycline antibiotics i.e. tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC) and doxycycline (DC) under different environmental conditions, and determined their parents and transformation products in the wastewater treatment plants (WWTPs). The results showed that the hydrolysis of the four tetracyclines followed first-order reaction kinetics, and the acid-catalyzed hydrolysis rates were significantly lower than the base-catalyzed and neutral pH hydrolysis rates. The effect of temperature on tetracycline hydrolysis was quantified by Arrhenius equation, with Ea values ranged from 42.0 kJ mol-1 to 77.0 kJ mol-1 at pH 7.0. In total, nine, six, eight and nine transformation products at three different pH conditions were identified for TC, CTC, OTC and DC, respectively. The main hydrolysis pathways involved the epimerization/isomerization, and dehydration. According to the mass balance analysis, 4-epi-tetracycline and iso-chlortetracycline were the main hydrolytic products for TC and CTC, respectively. The 2 tetracyclines and 4 hydrolysis products were found in the sludge samples in two WWTPs, with concentrations from 15.8 ng/g to 1418 ng/g. Preliminary toxicity evaluation for the tetracyclines and their hydrolysis products showed that some hydrolysis products had higher predicted toxicity than their parent compounds. These results suggest that the hydrolysis products of tetracycline antibiotics should also be included in environmental monitoring and risk assessment.


Subject(s)
Tetracycline , Water Purification , Anti-Bacterial Agents , Hydrolysis , Kinetics , Tetracycline/toxicity , Tetracyclines
3.
Sci Total Environ ; 746: 141332, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32758990

ABSTRACT

Psychoactive drug diazepam is one of benzodiazepines widely used in human medicine. It has been found to be relatively resistant to chlorination and photolysis. Here we investigated the transformation mechanism of diazepam in aqueous solution through UV/chlorine and simulated sunlight/chlorine treatments. The results showed that the UV/chlorine and sunlight/chlorine processes significantly increased the degradation of diazepam in water. These observed degradations can be elucidated by in-situ generation of reactive species including hydroxyl radical (HO), reactive chlorine species (RCS) and ozone (O3) during photolysis of chlorine. In the UV/chlorine treatment, the degradation efficiency of diazepam for HO, chlorine, UV and RCS reaction at 90 min was calculated to be 62.1%, 3.8%, 11.9% and 12.3%, respectively. In the simulated sunlight/chlorine treatment, the calculated degradation of 53.1%, 8.1% and 11.2% was attributed to HO, chlorine and RCS reaction, with negligible loss by O3 reaction and sunlight irradiation. In the UV/chlorine and sunlight/chlorine treatments, a total of 70 transformation products was detected using a high-resolution TripleTOF mass system. Six transformation pathways have been tentatively proposed for the diazepam, which includes hydroxylation, chlorination, hydrolyzation, N-demethylation, loss of phenyl group, benzodiazepine ring rearrangement and contraction. Most of the obtained transformation products were less toxic to aquatic organisms including fish, daphnia and green algae than diazepam itself according to the toxicity prediction tool, and did not cause significant changes in toxicity to luminescent bacteria.


Subject(s)
Water Pollutants, Chemical/analysis , Water Purification , Animals , Chlorine , Diazepam , Kinetics , Oxidation-Reduction , Photolysis , Sunlight , Ultraviolet Rays , Water
4.
Zool Res ; 41(4): 381-394, 2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32400977

ABSTRACT

Magnetic brain stimulation has greatly contributed to the advancement of neuroscience. However, challenges remain in the power of penetration and precision of magnetic stimulation, especially in small animals. Here, a novel combined magnetic stimulation system (c-MSS) was established for brain stimulation in mice. The c-MSS uses a mild magnetic pulse sequence and injection of superparamagnetic iron oxide (SPIO) nanodrugs to elevate local cortical susceptibility. After imaging of the SPIO nanoparticles in the left prelimbic (PrL) cortex in mice, we determined their safety and physical characteristics. Depressive-like behavior was established in mice using a chronic unpredictable mild stress (CUMS) model. SPIO nanodrugs were then delivered precisely to the left PrL cortex using in situ injection. A 0.1 T magnetic field (adjustable frequency) was used for magnetic stimulation (5 min/session, two sessions daily). Biomarkers representing therapeutic effects were measured before and after c-MSS intervention. Results showed that c-MSS rapidly improved depressive-like symptoms in CUMS mice after stimulation with a 10 Hz field for 5 d, combined with increased brain-derived neurotrophic factor (BDNF) and inactivation of hypothalamic-pituitary-adrenal (HPA) axis function, which enhanced neuronal activity due to SPIO nanoparticle-mediated effects. The c-MSS was safe and effective, representing a novel approach in the selective stimulation of arbitrary cortical targets in small animals, playing a bioelectric role in neural circuit regulation, including antidepressant effects in CUMS mice. This expands the potential applications of magnetic stimulation and progresses brain research towards clinical application.


Subject(s)
Depression/therapy , Gyrus Cinguli/physiology , Magnetic Iron Oxide Nanoparticles/administration & dosage , Animals , Magnetic Phenomena , Male , Mice , Mice, Inbred C57BL
5.
Water Res ; 175: 115656, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32145399

ABSTRACT

Microalgae-mediated biodegradation of antibiotics has recently gained increased attention from international scientific community. However, limited information is available regarding microalgae-mediated biodegradation of SMX in a co-metabolic system. Here we investigated the biodegradation of sulfamethoxazole (SMX) by five algal species (Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, Scenedesmus acuminatus and Chlorella pyrenoidosa), and its transformation pathways by C. pyrenoidosa in a sodium acetate (3 mM) co-metabolic system. The results showed that the highest SMX dissipation (14.9%) was detected by C. pyrenoidosa after 11 days of cultivation among the five tested algal species in the absence of other carbon sources. The addition of sodium acetate (0-8 mM) significantly enhanced the dissipation efficiency of SMX (0.4 µM) from 6.05% to 99.3% by C. pyrenoidosa after 5 days of cultivation, and the dissipation of SMX followed the first-order kinetic model with apparent rate constants (k) ranging from 0.0107 to 0.9811 d-1. Based on the results of mass balance analysis, biodegradation by C. pyrenoidosa was the main mechanism for the dissipation of SMX in the culture medium. Fifteen phase I and phase II metabolites were identified, and subsequently the transformation pathway was proposed, including oxidation, hydroxylation, formylation and side chain breakdown, as well as pterin-related conjugation. The majority of metabolites of SMX were only observed in the culture medium and varied with cultivation time. The findings of the present study showed effective co-metabolism of a sulfonamide by microalgae, and it may be applied in the aquatic environment remediation and wastewater treatment in the future.


Subject(s)
Chlorella , Microalgae , Scenedesmus , Fresh Water , Sulfamethoxazole
6.
Sci Total Environ ; 661: 407-421, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30677686

ABSTRACT

Benzotriazoles (BTs) are a group of heterocyclic compounds which have been widely applied in industrial activities and domestic life mainly as corrosive inhibitors. BTs have been ubiquitously detected in receiving environments and cause potential toxicity to non-target organisms. This paper reviews the occurrence and fate of six selected benzotriazole compounds in different environmental and biological matrices, as well as the transformation and toxicity. Due to their high hydrophilicity and insufficient removal in wastewater treatment plants (WWTPs), these compounds were widely detected in aquatic environments with concentrations mainly from tens ng/L to tens µg/L. Considerable residual levels of BTs in plant, fish, air, tap water and human urine have implied the potential risks to various organsims. The reported acute toxicity of BTs are generally low (EC50 in mg/L level). Some observed sublethal effects including endocrine disrupting effects, hepatotoxicity and neurotoxicity, as well as the ability to promote the development of endometrial carcinoma still raise a concern. BTs are found often more recalcitrant to biodegradation compared to photolysis and ozonation. Environmental factors including pH, temperature, irradiation wavelength, redox condition as well as components of matrix are proved crucial to the removal of BTs. Further studies are needed to explore the precise environment fate and toxicity mechanism of BTs, and develop advanced treatment technologies to reduce the potential ecological risks of BTs.


Subject(s)
Environmental Monitoring , Triazoles/analysis , Triazoles/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Animals , Drinking Water/analysis , Humans , Plants/drug effects , Plants/metabolism , Urine/chemistry
7.
Chemosphere ; 219: 243-249, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30543959

ABSTRACT

Climbazole is an antifungal agent widely used in household personal care products, and it was found persistent in chlorination disinfection process. Here we investigated the kinetics and mechanism of climbazole degradation by UV/chlorine process. The results showed that the UV/chlorine process dramatically enhanced degradation of climbazole when compared to the UV photolysis and chlorination alone. The neutral condition (pH 7) produced the highest reaction rate for the climbazole by UV/chlorine among the various pH conditions. Dissolved organic matter and inorganic ions in natural water showed moderate inhibition effects on the degradation of climbazole in the UV/chlorine process. Hydroxyl radical (OH and chlorine radical (Cl) were found to be the main reactive species in the degradation of climbazole, with the second-order rate constant of 1.24 × 1010 M-1 s-1 and 6.3 × 1010 M-1 s-1, respectively. In addition, the OH and Cl in the UV/chlorine at 100 µM accounted for 82.2% and 7.7% contributions to the removal of climbazole, respectively. Eleven of main transformation products of climbazole were identified in the UV/chlorine process. These oxidation products did not cause extra toxicity than climbazole itself. The findings from this study show that the combination of chlorination with UV photolysis could provide an effective approach for removal of climbazole during conventional disinfection process.


Subject(s)
Chlorine/chemistry , Halogenation/physiology , Imidazoles/therapeutic use , Water Pollutants, Chemical/metabolism , Water Purification/methods , Imidazoles/pharmacology , Kinetics
8.
Int J Nanomedicine ; 13: 1749-1759, 2018.
Article in English | MEDLINE | ID: mdl-29606868

ABSTRACT

BACKGROUND: Melanin and manganese are both indispensable natural substances that play crucial roles in the human body. Melanin has been used as a multimodality imaging nanoplatform for biology science research because of its natural binding ability with metal ions (eg, 64Cu2+, Fe3+, and Gd3+). Because of its effects on T1 signal enhancement, Mn-based nanoparticles have been used in magnetic resonance (MR) quantitative cell tracking in vivo. Stem cell tracking in vivo is an essential technology used to characterize engrafted stem cells, including cellular viability, biodistribution, differentiation capacity, and long-term fate. METHODS: In the present study, manganese(II) ions chelated to melanin nanoparticles [MNP-Mn(II)] were synthesized. The characteristics, stem cell labeling efficiency, and cytotoxicity of the nanoparticles were evaluated. MR imaging of the labeled stem cells in vivo and in vitro were also further performed. In T1 relaxivity (r1), MNP-Mn(II) were significantly more abundant than Omniscan. Bone marrow-derived stem cells (BMSCs) can be labeled easily by coincubating with MNP-Mn(II), suggesting that MNP-Mn(II) had high biocompatibility. RESULTS: Cell Counting Kit-8 assays revealed that MNP-Mn(II) had almost no cytotoxicity when used to label BMSCs, even with a very high concentration (1,600 µg/mL). BMSCs labeled with MNP-Mn(II) could generate a hyperintense T1 signal both in vitro and in vivo, and the hyperintense T1 signal in vivo persisted for at least 28 days. CONCLUSION: Taken together, our results showed that MNP-Mn(II) possessed many excellent properties for potential quantitative stem cell tracking in vivo.


Subject(s)
Magnetic Resonance Imaging/methods , Manganese/chemistry , Melanins/chemistry , Nanoparticles/chemistry , Stem Cells/cytology , Animals , Biocompatible Materials/chemistry , Cell Differentiation , Chelating Agents/chemistry , Male , Nanoparticles/therapeutic use , Rats, Sprague-Dawley , Tissue Distribution
9.
Apoptosis ; 22(4): 519-530, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28078537

ABSTRACT

We have found that Fas/FasL-mediated "extrinsic" pathway promoted cell apoptosis induced by renal ischemic injury. This study is to elucidate the upstream mechanism regulating FasL-induced extrinsic pathway during renal ischemia/reperfusion. Results demonstrated that when SIRT2 was activated by renal ischemia/reperfusion, activated SIRT2 could bind to and deacetylate FOXO3a, promoting FOXO3a nuclear translocation which resulted in an increase of nuclear FOXO3a along with FasL expression and activation of caspase8 and caspase3, triggering cell apoptosis during renal ischemia/reperfusion. The administration of SIRT2 inhibitor AGK2 prior to renal ischemia decreased significantly the number of apoptotic renal tubular cells and alleviated ultrastructure injury. These results indicate that inhibition of FOXO3a deacetylation might be a promising therapeutic approach for renal ischemia /reperfusion injury.


Subject(s)
Active Transport, Cell Nucleus/physiology , Apoptosis/physiology , Fas Ligand Protein/physiology , Forkhead Box Protein O3/metabolism , Ischemia/pathology , Kidney/blood supply , Reperfusion Injury/pathology , Sirtuin 2/physiology , Acetylation , Animals , Cell Nucleus/metabolism , Drug Evaluation, Preclinical , Enzyme Activation , Furans/pharmacology , Ischemia/metabolism , Kidney/pathology , Male , Protein Processing, Post-Translational , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Reperfusion Injury/metabolism
10.
J Biomed Mater Res A ; 105(1): 131-137, 2017 01.
Article in English | MEDLINE | ID: mdl-27588709

ABSTRACT

Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we designed and synthesized melanin-based gadolinium3+ (Gd3+ )-chelate nanoparticles (MNP-Gd3+ ) of ∼7 nm for stem cell tracking in vivo. MNP-Gd3+ possesses many beneficial properties, such as its high stability and sensitivity, shorter T1 relaxation time, higher cell labeling efficiency, and lower cytotoxicity compared with commercial imaging agents. We found that the T1 relaxivity (r1 ) of MNP-Gd3+ was significantly higher than that of Gd-DTPA; the nanoparticles were taken up by bone mesenchymal stem cells (BMSCs) via endocytosis and were broadly distributed in the cytoplasm. Based on an in vitro MTT assay, no cytotoxicity of labeled stem cells was observed for MNP-Gd3+ concentrations of less than 800 µg/mL. Furthermore, we tracked MNP-Gd3+ -labeled BMSCs in vivo using 3.0T MRI equipment. After intramuscular injection, MNP-Gd3+ -labeled BMSCs were detected, even after four weeks, by 3T MRI. We concluded that MNP-Gd3+ nanoparticles at appropriate concentrations can be used to effectively monitor and track BMSCs in vivo. MNP-Gd3+ nanoparticles have potential as a new positive MRI contrast agent in clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 131-137, 2017.


Subject(s)
Bone Marrow Cells/cytology , Cell Tracking/methods , Contrast Media , Gadolinium , Magnetic Resonance Imaging/methods , Melanins , Mesenchymal Stem Cells/cytology , Nanoparticles , Animals , Bone Marrow Cells/metabolism , Contrast Media/chemistry , Contrast Media/pharmacology , Gadolinium/chemistry , Gadolinium/pharmacology , Materials Testing , Melanins/chemistry , Melanins/pharmacology , Mesenchymal Stem Cells/metabolism , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Rats , Rats, Sprague-Dawley
11.
Appl Biochem Biotechnol ; 173(2): 365-77, 2014 May.
Article in English | MEDLINE | ID: mdl-24664232

ABSTRACT

In this study, a high (R)-enantioselective nitrilase gene from Sphingomonas wittichii RW1 was cloned and overexpressed in Escherichia coli BL21 (DE3). The recombinant nitrilase was purified to homogeneity with a molecular weight of 40 kDa. The pH and temperature optima were shown to be pH 8.0 and 40 °C, respectively. The purified nitrilase was most active toward succinonitrile, approximately 30-fold higher than that for phenylglycinonitrile. Using the E. coli BL21/ReSWRW1 whole cells as biocatalysts, the kinetic resolution for asymmetric synthesis of (R)-phenylglycine was investigated at pH 6.0. A yield of 46 % was obtained with 95 % enantiomeric excess (ee), which made it a promising biocatalyst for synthesis of (R)-phenylglycine.


Subject(s)
Aminohydrolases/genetics , Aminohydrolases/metabolism , Glycine/analogs & derivatives , Sphingomonas/enzymology , Sphingomonas/genetics , Amino Acid Sequence , Aminohydrolases/chemistry , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Glycine/biosynthesis , Glycine/chemistry , Hydrogen-Ion Concentration , Kinetics , Metals/pharmacology , Molecular Sequence Data , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Analysis , Stereoisomerism , Substrate Specificity , Temperature
12.
Mol Cell Biochem ; 373(1-2): 1-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23212446

ABSTRACT

Tumor necrosis factor-alpha (TNFα) plays a crucial role in inflammatory diseases such as rheumatoid arthritis and postmenopausal osteoporosis. Recently, it has been demonstrated that hydrogen gas, known as a novel antioxidant, can exert therapeutic anti-inflammatory effect in many diseases. In this study, we investigated the effect of treatment with hydrogen molecule (H(2)) on TNFα-induced cell injury in osteoblast. The osteoblasts isolated from neonatal rat calvariae were cultured. It was found that TNFα suppressed cell viability, induced cell apoptosis, suppressed Runx2 mRNA expression, and inhibited alkaline phosphatase activity, which was reversed by co-incubation with H(2). Incubation with TNFα-enhanced intracellular reactive oxygen species (ROS) formation and malondialdehyde production increased NADPH oxidase activity, impaired mitochondrial function marked by increased mitochondrial ROS formation and decreased mitochondrial membrane potential and ATP synthesis, and suppressed activities of antioxidant enzymes including SOD and catalase, which were restored by co-incubation with H(2). Treatment with H(2) inhibited TNFα-induced activation of NFκB pathway. In addition, treatment with H(2) inhibited TNFα-induced nitric oxide (NO) formation through inhibiting iNOS activity. Treatment with H(2) inhibited TNFα-induced IL-6 and ICAM-1 mRNA expression. In conclusion, treatment with H(2) alleviates TNFα-induced cell injury in osteoblast through abating oxidative stress, preserving mitochondrial function, suppressing inflammation, and enhancing NO bioavailability.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Hydrogen/pharmacology , Osteoblasts/drug effects , Tumor Necrosis Factor-alpha/physiology , Alkaline Phosphatase/metabolism , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Gene Silencing/drug effects , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Osteoblasts/enzymology , Osteoblasts/immunology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Transcriptional Activation/drug effects , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...