Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Histochem ; 65(4)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34818876

ABSTRACT

Preeclampsia (PE) is one of the leading causes of maternal morbidity and mortality in pregnant women. This study aimed to investigate the potential impact and regulatory mechanisms of bone morphogenetic protein receptor 2 (BMPR2) on the progression of PE. We obtained placental tissues from pregnant women with PE and normal pregnant women, and the results showed that BMPR2 was expressed at low levels in the tissue from PE women. Genetic knockdown of BMPR2 increased the proliferation and invasion of cultured trophoblast cells, whereas its overexpression reduced these characteristics. Bioinformatics analysis and luciferase reporter gene assays confirmed that BMPR2 is a direct target of miR-21. Overexpression of a miR-21 inhibitor promoted the growth and invasiveness of trophoblast cells, whereas the opposite results were observed for the miR-21 mimic. Furthermore, miR-21 was sponged by the lncRNA MEG3, and shRNA inhibition of MEG3 reduced trophoblast cell growth and invasiveness. miR-21 was upregulated in the tissues from PE women, whereas MEG3 was downregulated, and the two were negatively correlated. Collectively, this study demonstrates that the lncRNA MEG3 acts as a sponge for miR-21, which regulates BMPR2 expression and promotes trophoblast cell proliferation and invasiveness, thereby preventing the development of PE. These findings provide novel insight into a targeted therapy that could be used to treat or prevent the development of PE.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/metabolism , Cell Proliferation , MicroRNAs/metabolism , Pre-Eclampsia/metabolism , RNA, Long Noncoding/metabolism , Trophoblasts/metabolism , Adult , Bone Morphogenetic Protein Receptors, Type II/genetics , Cell Line , Female , Humans , MicroRNAs/genetics , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Pregnancy , RNA, Long Noncoding/genetics , Trophoblasts/pathology
2.
Oncol Lett ; 20(4): 111, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32863924

ABSTRACT

Drug resistance leads to tumor relapse and further progression during chemotherapy in lung cancer. Close homolog of L1 (CHL1) has been identified as a tumor suppressor in most malignancies. However, to the best of our knowledge, whether CHL1 mediates chemoresistance remains unknown. The present study observed that CHL1 was significantly downregulated in cisplatin (DDP)-resistant cells (A549/DDP) and paclitaxel (PTX)-resistant cells (A549/PTX) compared with A549 cells. When treated with or without DDP and PTX, silencing of CHL1 in A549 cells promoted the cell survival rate and clone formation, and decreased apoptosis. Whereas overexpression of CHL1 in A549/DDP and A549/PTX cells impeded the cell survival and clone formation and promoted apoptosis. Additionally, CHL1 overexpression enhanced the chemosensitivity of A549/DDP cells to DDP in vivo. Notably, the chemoresistance induced by CHL1 depletion was reversed by the Akt inhibitor SC66 in A549 cells. The results of the present study demonstrated that CHL1 enhanced sensitivity of lung cancer cells by suppressing the Akt pathway, which suggested that CHL1 may be a potential target for overcoming chemoresistance in lung cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...