Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(22): 40569-40583, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298987

ABSTRACT

Quantum key distribution (QKD) and quantum key agreement (QKA) are two main branches of key establishment in quantum cryptography. However, the research of QKA falls far behind that of QKD, especially in practicability. The main reason is that QKA needs to resist not only the outside eavesdropping but also the participant cheating. Resisting dishonest participant is more difficult than resisting outside eavesdropping, especially when the apparatuses are imperfect. Actually, existing QKA protocols cannot tolerate the channel loss and have to rely on stable quantum storage. To solve this problem, we give a new quantum multi-party key agreement protocol based on the error-correcting code. Our protocol is loss tolerant, and the participants can measure the received qubits immediately in one of two conjugate bases, without storage, so our protocol can eliminate the requirement of quantum storage. Besides, our protocol is more fair because it can partially discriminate dishonest participants' cheating from outside eavesdropping (previously, these two attacks are generally checked simultaneously via decoy states but cannot be discriminated), as a result, dishonest participants generally will not cheat at the cost of losing good reputation.

2.
Sci Rep ; 7(1): 2485, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28559570

ABSTRACT

We present a new collusion attack to a kind of quantum secret sharing schemes with entangled states. Using this attack, an unauthorized set of agents can gain access to the shared secret without the others' cooperation. Furthermore, we establish a general model for this kind of quantum secret sharing schemes and then give some necessary conditions to design a secure quantum secret sharing scheme under this model.

3.
Sci Rep ; 5: 9231, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25782417

ABSTRACT

Quantum digital signatures can be used to authenticate classical messages in an information-theoretically secure way. Previously, a novel quantum digital signature for classical messages has been proposed and gave an experimental demonstration of distributing quantum digital signatures from one sender to two receivers. Some improvement versions were subsequently presented, which made it more feasible with present technology. These proposals for quantum digital signatures are basic building blocks which only deal with the problem of sending single bit messages while no-forging and non-repudiation are guaranteed. For a multi-bit message, it is only mentioned that the basic building blocks must be iterated, but the iteration of the basic building block still does not suffice to define the entire protocol. In this paper, we show that it is necessary to define the entire protocol because some attacks will arise if these building blocks are used in a naive way of iteration. Therefore, we give a way of defining an entire protocol to deal with the problem of sending multi-bit messages based on the basic building blocks and analyse its security.

SELECTION OF CITATIONS
SEARCH DETAIL
...