Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 4(7): e6423, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-19641616

ABSTRACT

BACKGROUND: Longevity is a multifactorial trait with a genetic contribution, and mitochondrial DNA (mtDNA) polymorphisms were found to be involved in the phenomenon of longevity. METHODOLOGY/PRINCIPAL FINDINGS: To explore the effects of mtDNA haplogroups on the prevalence of extreme longevity (EL), a population based case-control study was conducted in Rugao--a prefecture city in Jiangsu, China. Case subjects include 463 individuals aged > or = 95 yr (EL group). Control subjects include 926 individuals aged 60-69 years (elderly group) and 463 individuals aged 40-49 years (middle-aged group) randomly recruited from Rugao. We observed significant reduction of M9 haplogroups in longevity subjects (0.2%) when compared with both elderly subjects (2.2%) and middle-aged subjects (1.7%). Linear-by-linear association test revealed a significant decreasing trend of N9 frequency from middle-aged subjects (8.6%), elderly subjects (7.2%) and longevity subjects (4.8%) (p = 0.018). In subsequent analysis stratified by gender, linear-by-linear association test revealed a significant increasing trend of D4 frequency from middle-aged subjects (15.8%), elderly subjects (16.4%) and longevity subjects (21.7%) in females (p = 0.025). Conversely, a significant decreasing trend of B4a frequency was observed from middle-aged subjects (4.2%), elderly subjects (3.8%) and longevity subjects (1.7%) in females (p = 0.045). CONCLUSIONS: Our observations support the association of mitochondrial DNA haplogroups with exceptional longevity in a Chinese population.


Subject(s)
DNA, Mitochondrial/genetics , Haplotypes , Longevity , Aged , China , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
2.
J Hum Genet ; 53(4): 303-313, 2008.
Article in English | MEDLINE | ID: mdl-18270655

ABSTRACT

The Han Chinese is the largest single ethnic group in the world, consisting of ten Chinese branches. With the exception of the Pinghua branch, the genetic structure of this group has been studied extensively, and Y chromosome and mitochondrial (mt)DNA data have demonstrated a coherent genetic structure of all Han Chinese. It is therefore believed that the Pinghua branch, being members of an old branch of the Han Chinese, despite being scattered in and around Guangxi Province where members of the Daic and Hmong-Mien are more prevalent than Han Chinese, is no exception. We have studied 470 individual samples (including 195 males) from Pinghua populations and other ethnic groups (Zhuang, Kam, Mulam, Laka, and Mien) from six areas (Hezhou, Fuchuan, Luocheng, Jinxiu, Sanjiang, and Wuxuan) in the north of the Guangxi Zhuang Autonomous Region of China. Both mtDNA and the Y chromosomes were typed in these samples. High frequencies of the Y chromosome haplogroups O2a* and O*, which always present at a high frequency among the populations of the southern minorities, were found in Pinghua populations. Only Pinghua populations in Luocheng and Jinxiu maintain the Han frequent haplogroup O3a5a. mtDNA lineages B4a, B5a, M*, F1a, M7b1, and N* were found in Pinghua populations, exhibiting a pattern similar to the neighboring indigenous populations, especially the Daic populations. Cluster analyses (dendrograms, principal component analyses, and networks) of Pinghua populations, the other Han branches, and other ethnic groups in East Asia indicated that Pinghua populations are much closer to the southern minorities than to the other Han branches. Admixture analyses confirmed this result. In conclusion, we argue that Pinghua populations did not descend from Han Chinese, but from southern minorities. The ancestral populations of Pinghua people were assimilated by the Han Chinese in terms of language, culture, and self-identification and, consequently, the Pinghua people became an exceptional branch of Han Chinese's coherent genetic structure.


Subject(s)
Asian People/genetics , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Ethnicity/genetics , Genetics, Population , Base Sequence , China , Cluster Analysis , Female , Haplotypes/genetics , Humans , Male , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Principal Component Analysis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...