Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Surg Res ; 16(1): 503, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34399792

ABSTRACT

BACKGROUND: Dimensional measurements have been implemented on a variety of entities in morphological studies of the sub-axial cervical vertebral endplate. Despite great progress, little information between the mid-sagittal plane and bilateral uncinate processes has been acquired due to the lack of a reliable method to determine the para-sagittal planes. Also, few studies of this region are available. We proposed a new approach to defining the para-sagittal planes on a 3D cervical vertebral body model; in this approach, dimensions can be measured in a specific plane. The aim of this study was to assess the inter-observer and intra-observer reliability of the measurements in different sagittal planes on sub-axial cervical vertebral endplates of 3D models. METHODS: We established mid-sagittal and bilateral quarter para-sagittal planes on the 3D model of a sub-axial cervical vertebral body based on landmarks labeled on the surface. By intersecting the vertebral body with the planes, three curves located at the three para-sagittal planes were generated. Linear dimensions were measured on every curve by two observers separately, and in total, 24 sub-axial cervical spines were included in the study. The first observer (O1) performed the procedure twice with an interval of 2 weeks. The paired t test, Wilcoxon matched-pairs signed-rank test and the interclass correlation coefficient (ICC) were employed to evaluate the inter- and intra-observer reliability of the proposed method. RESULTS: There were no significant differences in most intra- and inter-observer comparisons, and higher non-significant proportions were found in the intra-observer comparisons than in comparisons between different observers. The interclass correlation coefficients (ICCs) in the measurements were excellent (> 0.75) in most circumstances, and the values in intra-observer comparisons were higher than those in inter-observer comparisons. CONCLUSIONS: In this study, we proposed an approach to determine the bilateral quarter para-sagittal planes in a 3D cervical vertebral body model; the results demonstrated that the method is reproducible with high intra- and inter-observer agreement.


Subject(s)
Imaging, Three-Dimensional , Vertebral Body , Cervical Vertebrae/diagnostic imaging , Humans , Observer Variation , Reproducibility of Results
2.
Medicine (Baltimore) ; 100(28): e26666, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34260574

ABSTRACT

BACKGROUND: To investigate the feasibility of using cortical bone trajectory (CBT) screws for bridging fixation in revision surgery for lumbar adjacent segment degeneration and to provide a reference for clinical practice. METHODS: Computed tomography scans of the lumbar spines of 36 patients in our hospital were used. Sixteen males and 20 females with an average age of 65.5 ±â€Š10.5 years (range: 46 to 83 years) were included. Three-dimensional reconstruction was performed using computer software. Screws with appropriate sizes were selected for the L1 to L5 vertebral segments, and traditional pedicle screws were placed using the standard method. After completing screw placement, simulated placement of CBT screws was performed separately. No overlap occurred between the two screws in the process of CBT screw placement, and the placement point and direction were adjusted until screw placement completion. After all screw placement simulations were complete, according to the contact area of the cortical bone of the screw trajectory and the screw puncture position and distance through the trajectory, the screw placement results were categorized as excellent, good, general, and failure. Excellent and good ratings were considered successful, while a general rating was regarded as acceptable. Then, the success rate and acceptable rate of each segment of the lumbar spine were calculated. RESULTS: Three hundred and sixty screw placement simulations were performed in lumbar pedicles, and 72 CBT screws were implanted in each vertebral body of the lumbar spine. The success rates in the L1 to L5 segments were 73.6%, 80.6%, 83.3%, 88.9%, and 77.8%, respectively, and the acceptable rates were 91.7%, 97.2%, 97.2%, 100%, and 91.7%, respectively. The overall success rate and acceptable rate of CBT screw placement in the lumbar spine were 80.8% and 95.6%, respectively. CONCLUSION: CBT screws are feasible for bridging fixation in lumbar adjacent segment degeneration revision surgery, and the accuracy of screw placement in different lumbar vertebrae varies.


Subject(s)
Bone Screws , Cortical Bone/physiopathology , Fracture Fixation, Internal/methods , Lumbar Vertebrae/surgery , Reoperation/methods , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...