Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Am J Hypertens ; 37(1): 33-45, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37738301

ABSTRACT

BACKGROUND: Uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) contributes to the pathogenesis of pulmonary arterial hypertension (PAH). In this work, we defined the precise part of circ_0068481 in PASMC proliferation and migration induced by hypoxia. We hypothesized that circ_0068481 enhanced hypoxia-induced PASMC proliferation, invasion, and migration through the microRNA (miR)-361-3p/Krüppel-like factor 5 (KLF5) pathway. METHODS: Human PASMCs (hPASMCs) were exposed to hypoxic (3% O2) conditions. Circ_0068481, miR-361-3p, and KLF5 levels were gauged by qRT-PCR and western blot. Cell viability, proliferation, invasion, and migration were detected by XTT, EdU incorporation, transwell, and wound-healing assays, respectively. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were performed to confirm the direct relationship between miR-361-3p and circ_0068481 or KLF5. RESULTS: Circ_0068481 expression was increased in the serum of PAH patients and hypoxia-induced hPASMCs. Downregulation of circ_0068481 attenuated hypoxia-induced promotion in hPASMC proliferation, invasion, and migration. Circ_0068481 directly targeted miR-361-3p, and miR-361-3p downregulation reversed the inhibitory effects of circ_0068481 silencing on hypoxia-induced hPASMC proliferation, invasion, and migration. KLF5 was a direct miR-361-3p target, and miR-361-3p upregulation mitigated hypoxia-induced hPASMC proliferation, invasion, and migration by inhibiting KLF5 expression. Moreover, circ_0068481-induced KLF5 expression by binding to miR-361-3p in hypoxic hPASMCs. CONCLUSIONS: Circ_0068481 knockdown ameliorated hypoxia-induced hPASMC proliferation, invasion, and migration at least in part through the miR-361-3p/KLF5 axis.


Subject(s)
MicroRNAs , Pulmonary Arterial Hypertension , Humans , Cell Hypoxia/genetics , Cell Proliferation , Familial Primary Pulmonary Hypertension , Hypoxia/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery , Transcription Factors , RNA, Circular/genetics
2.
J Card Surg ; 37(12): 4991-4998, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36423241

ABSTRACT

OBJECTIVE: To observe fat tissue and the expression of adipokines in rheumatic heart valves and explore the possible role of fat tissue and adipokines in the pathology of rheumatic heart disease (RHD). METHODS: In this retrospective study, a total of 29 patients who received mitral valve replacement surgery were included. The study group consisted of 25 patients with RHD while the control group consisted of 4 patients with secondary mitral insufficiency caused by coronary heart disease (CAD). The clinical data of the patients including medical history, age, body mass index (BMI), fasting blood glucose (FBG), total triglycerides (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), apolipoprotein(a) [apo(a)], apolipoprotein(b) [apo(b)] were collected and compared. Cardiac ultrasonography was used to assess valve conditions before surgery. The removed valves were collected. The hematoxylin-eosin (HE) staining, oil-red O staining, and Masson's trichrome staining were adopted to evaluate the histological changes in the mitral valve. Immunohistochemical (IMC) staining was performed to evaluate the expression of adiponectin, leptin, and chemerin. RESULTS: There was no significant difference in general information and blood lipid levels between the two groups (all p > .05). Preoperative ultrasonography showed adipose tissue in the mitral valve of RHD patients. In the study group, rheumatic mitral valve samples showed thickening, adherence at the junction of the leaflets, calcification, and yellowish or fat mass by naked observation. The HE staining showed that there was calcification, inflammatory cell infiltration, fibrous tissue arranged disorder, and neovascularization. The oil-red O staining suggested fatty infiltration. Masson's trichrome staining suggested disorderly arrangement of collagen fiber and elastic fiber in rheumatic lesions, and the lesions were dominated by collagen fiber hyperplasia and less elastic fiber hyperplasia. The results of IMC indicated that chemerin was not expressed in valves of the control group. Most of the valve samples from the study group also did not show leptin and the leptin was seen in only a few rheumatic mitral valves with vascular hyperplasia. Adiponectin was not found in the valves of the study group and the control group. CONCLUSION: Adipose tissue in the rheumatic mitral valve could be observed by ultrasound. The fat mass and adipokines existed in rheumatic mitral valves, the adipocytokine chemerin is involved in the progression of the pathology in RHD.


Subject(s)
Heart Valve Diseases , Rheumatic Heart Disease , Humans , Heart Valve Diseases/complications , Leptin , Adipokines , Retrospective Studies , Hyperplasia/complications , Hyperplasia/pathology , Rheumatic Heart Disease/surgery , Rheumatic Heart Disease/complications , Mitral Valve/surgery , Mitral Valve/pathology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Collagen , Cholesterol
3.
Lipids Health Dis ; 21(1): 110, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307855

ABSTRACT

PURPOSE: The aim of this study was to determine the expression of lipid metabolism-related proteins in rheumatic heart valve disease (RHVD). METHODS: This retrospective study involved a total of 20 cases of moderate or severe rheumatic mitral valve stenosis and 4 cases of mitral regurgitation due to secondary causes from September 2018 to September 2021. The patients enrolled included 12 males and 12 females who underwent surgical excision of the mitral valve at the cardiac surgery department of Hainan General Hospital. The samples of mitral valve were collected during surgery treatment as the study group, and mitral valves collected from patients with ischemic heart disease were allocated into the control group. Hematoxylin-eosin (HE), oil red staining and immunohistochemical (IHC) staining were conducted to compare the expression of lipid metabolism-related proteins (ATP-binding cassette transporter A1 and acyl-coenzyme A: cholesterol acyltransferase-1), and real-time polymerase chain reaction (RT-PCR) was applied to compare the mRNA levels of ABCA1, ACAT1, and the inflammatory cytokines TNF-α, IL-10, and MCP-1. RESULTS: In general, the rheumatic mitral valve showed leaflet thickening along with border adhesions and visible yellow fats. Oil red O staining also revealed the abovementioned results as well as fat cells. Both ABCA1 and ACAT1 were expressed in the rheumatic mitral valve via IHC, whereas only ACAT1 showed a faint level of expression in the ischemic mitral valve with no expression of ABCA1. In addition, compared with the ischemic mitral valve, RT-PCT showed increased mRNA expression levels of ABCA1, ACAT1, and the inflammatory cytokines TNF-α, IL-10, and MCP-1 (P < 0.05). After dividing the RMs into two groups for RT-PCR, we found that the higher the expression of ABCA1 and ACAT1 was, the lower the relative expression of inflammatory factors. CONCLUSION: This study showed that adipose tissue, adipose cells, and lipid transport-related proteins were expressed strongly in the rheumatic mitral valve, suggesting that adipose tissue formation might be one of the important pathways in the pathology of rheumatic heart disease. In addition, adipose tissue and adipocytes were also involved in the inflammatory process. These data provide new insight into pathological mechanisms in rheumatic heart disease.


Subject(s)
Heart Valve Diseases , Rheumatic Heart Disease , Male , Female , Humans , Rheumatic Heart Disease/genetics , Rheumatic Heart Disease/complications , Rheumatic Heart Disease/surgery , Interleukin-10 , Lipid Metabolism/genetics , Retrospective Studies , Tumor Necrosis Factor-alpha , Heart Valve Diseases/genetics , Heart Valve Diseases/complications , RNA, Messenger/genetics
4.
SELECTION OF CITATIONS
SEARCH DETAIL
...