Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(21): 25241-25249, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34018390

ABSTRACT

In this article, we have demonstrated a smart pH-modulated two-way photoswitch that can reversibly switch ion transport under alternating light exposure over a wide pH range. This photoswitch was prepared by functionalizing the interior of a single conical glass nanochannel with a poly-spiropyran-linked methacrylate (P-SPMA) polymer through surface-initiated atom transfer radical polymerization. The P-SPMA polymer brushes comprise functional groups that are responsive to light and pH, which can cause configuration and charge changes to affect the properties of the nanochannel wall. The SPMA polymer-modified nanochannel not only reversibly controlled ion transport under alternating light irradiation but also efficiently and flexibly regulated the direction and extent of the ion transport based on the pH. This two-way photoswitch exhibits the considerable potential of photoresponsive polymers for the advancement of "intelligent" bionic nanochannel devices for ion screening and optical sensing in various applications.

2.
Electrophoresis ; 40(16-17): 2098-2103, 2019 08.
Article in English | MEDLINE | ID: mdl-31020667

ABSTRACT

Herein, we report the ultrasensitive DNA detection through designing an elegant nanopore biosensor as the first case to realize the reversal of current rectification direction for sensing. Attributed to the unique asymmetric structure, the glass conical nanopore exhibits the sensitive response to the surface charge, which can be facilely monitored by ion current rectification curves. In our design, an enzymatic cleavage reaction was employed to alter the surface charge of the nanopore for DNA sensing. The measured ion current rectification was strongly responsive to DNA concentrations, even reaching to the reversed status from the negative ratio (-6.5) to the positive ratio (+16.1). The detectable concentration for DNA was as low as 0.1 fM. This is an ultrasensitive and label-free DNA sensing approach, based on the rectification direction-reversed amplification in a single glass conical nanopore.


Subject(s)
Biosensing Techniques/methods , DNA/analysis , Nanopores , Electric Conductivity , Equipment Design , Equipment Reuse , Sensitivity and Specificity
3.
Nanoscale ; 9(1): 433-439, 2017 Jan 07.
Article in English | MEDLINE | ID: mdl-27935003

ABSTRACT

In this article, we have demonstrated for the first time a triple stimuli-responsive nanofluidic diode that can rectify ionic current under multiple external stimuli including temperature, pH, and sugar. This diode was fabricated by immobilizing poly[2-(dimethylamino)ethyl methacrylate]-co-[4-vinyl phenylboronic acid] (P(DMAEMA-co-VPBA)) onto the wall of a single glass conical nanopore channel via surface-initiator atom transfer radical polymerization (SI-ATRP). The copolymer brushes contain functional groups sensitive to pH, temperature and sugar that can induce charge and configuration change to affect the status of the pore wall. The experimental results confirmed that the P(DMAEMA-co-VPBA) brush modified nanochannel regulated the ionic current rectification successfully under three different external stimuli. This biomimetically inspired research simulates the complex biological multi-functions of ion channels and promotes the development of "smart" biomimetic nanochannel systems for actuating and sensing applications.

4.
Chem Commun (Camb) ; 52(84): 12450-12453, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27709163

ABSTRACT

For the first time, a biomimetic ion channel co-modulated simultaneously by conformation and charge using a single stimulus has been demonstrated, and, based on the synergetic effect of this channel, an ultrasensitive nanopore sensor for ATP with a limit of detection down to sub-pM was developed.

5.
Chem Commun (Camb) ; 51(11): 2048-51, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25534584

ABSTRACT

The use of 1H-1,2,4-triazole-3-thiol (H2trzS) has led to a rare inorganic-organic hybrid supramolecular nanotube built from novel Ni5-substituted polyoxotungstates, which presents interesting structural characteristics, high chemical stability, and proton-conducting properties.


Subject(s)
Nanotubes/chemistry , Organometallic Compounds/chemistry , Protons , Tungsten Compounds/chemistry , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...