Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 374
Filter
1.
Sci Rep ; 14(1): 13457, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38862656

ABSTRACT

Acute pancreatitis (AP) is currently among the most prevalent digestive diseases. The pathogenesis of AP remains elusive, and there is no specific treatment. Therefore, identifying novel therapeutic targets is imperative for effective management and prevention of AP. In this study, we conducted a comprehensive transcriptomic analysis of peripheral blood from patients with AP and the pancreatic tissue from a mouse model of AP. Our analyses revealed that mouse model of AP exhibited a higher enrichment of mitogen-activated protein kinase signaling, endocytosis, apoptosis and tight junction pathways than the control. Subsequent weighted gene co-expression network analysis identified 15 gene modules, containing between 50 and 1000 genes each, which demonstrated significant correlations within samples from patients with AP. Further screening identified four genes (ACSL4, GALNT3, WSB1, and IL1R1) that were significantly upregulated in severe acute pancreatitis (SAP) in both human and mouse samples. In mouse models of SAP, ACSL4 was significantly upregulated in the pancreas, whereas GALNT3, WSB1, and IL1R1 were not. Lastly, we found that a commercially available ACSL4 inhibitor, PRGL493, markedly reduced IL-6 and TNFα expression, alleviated pancreatic edema and necrosis, and diminished the infiltration of inflammatory cells. In conclusion, this study comprehensively depicts the key genes and signaling pathways implicated in AP and suggests the potential of ACSL4 as a novel therapeutic target for SAP. These findings provide valuable insights for further exploration of therapeutic strategies for SAP.


Subject(s)
Disease Models, Animal , Pancreatitis , Animals , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/drug therapy , Pancreatitis/genetics , Humans , Mice , Male , Pancreas/metabolism , Pancreas/pathology , Pancreas/drug effects , Gene Expression Profiling , Signal Transduction , Acute Disease , Female
2.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38840336

ABSTRACT

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion injury (IRI) is unavoidable even despite the development of more effective surgical approaches. During hepatic IRI, activated HSC (aHSC) are involved in liver injury and recovery. APPROACH AND RESULT: A proportion of aHSC increased significantly both in the mouse liver tissues with IRI and in the primary mouse HSCs and LX-2 cells during hypoxia-reoxygenation. "Loss-of-function" experiments revealed that depleting aHSC with gliotoxin exacerbated liver damage in IRI mice. Subsequently, we found that the transcription of mRNA and the expression of B and T lymphocyte attenuator (BTLA) protein were lower in aHSC compared with quiescent HSCs. Interestingly, overexpression or knockdown of BTLA resulted in opposite changes in the activation of specific markers for HSCs such as collagen type I alpha 1, α-smooth muscle actin, and Vimentin. Moreover, the upregulation of these markers was also observed in the liver tissues of global BLTA-deficient (BTLA-/-) mice and was higher after hepatic IRI. Compared with wild-type mice, aHSC were higher, and liver injury was lower in BTLA-/- mice following IRI. However, the depletion of aHSC reversed these effects. In addition, the depletion of aHSC significantly exacerbated liver damage in BTLA-/- mice with hepatic IRI. Furthermore, the TGF-ß1 signaling pathway was identified as a potential mechanism for BTLA to negatively regulate the activation of HSCs in vivo and in vitro. CONCLUSIONS: These novel findings revealed a critical role of BTLA. Particularly, the receptor inhibits HSC-activated signaling in acute IRI, implying that it is a potential immunotherapeutic target for decreasing the IRI risk.


Subject(s)
Hepatic Stellate Cells , Liver , Receptors, Immunologic , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/deficiency , Mice , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Male , Mice, Knockout , Humans
3.
Front Surg ; 11: 1358600, 2024.
Article in English | MEDLINE | ID: mdl-38752130

ABSTRACT

Background: Nowadays, people's pace of life continues to rapid up, and many bad habits will accelerate the aging of the eye periphery, and patients with sunken upper eyelids are to be found in younger people. In young Asians, single eyelids are often accompanied by upper eyelid depression, so correcting the upper eyelid depression during blepharoplasty becomes a higher challenge for plastic surgeons. Current surgical methods for upper eyelid depression include three major categories: tissue repositioning, injection and filling, and combined use. According to grades 1 and 2 are mild or moderate upper eyelid sunken. The sunken can be well corrected only by repositioning the orbital fat pad, while the correction effect for severe upper eyelid sunken in grades 3 and 4 is Poor, need to be used in combination to achieve the desired effect. Purpose: The authors sought to determine whether, for patients with single eyelids and severe upper eyelid depression of grades 3 and 4, combined with orbital fat pad repositioning and autologous fat transplantation during blepharoplasty, an aesthetic and youthful blepharoplasty can be achieved. Methods: This study included 79 patients with single eyelids and severe upper eyelid depression of grades 3 and 4 who received treatment between June 2020 and July 2022. All patients underwent double eyelid surgery plus orbital fat repositioning and autologous fat grafting. Results: After a minimum follow-up period of 1 year, overall patient satisfaction was 92%. The recurrence rate within the first year was 6% and the complication rate was 5%. Conclusion: This combined surgery may be an option for young Asians with single eyelids and severe upper eyelid depression. In this study, the surgery resulted in natural-looking double eyelids and younger-looking eye sockets in most patients. A combination of different surgical methods based on the patient's preoperative condition is critical to achieving long-term correction.

4.
J Med Virol ; 96(4): e29607, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628076

ABSTRACT

Hepatitis B e antigen (HBeAg) seropositivity during the natural history of chronic hepatitis B (CHB) is known to coincide with significant increases in serum and intrahepatic HBV DNA levels. However, the precise underlying mechanism remains unclear. In this study, we found that PreC (HBeAg precursor) genetic ablation leads to reduced viral replication both in vitro and in vivo. Furthermore, PreC impedes the proteasomal degradation of HBV polymerase, promoting viral replication. We discovered that PreC interacts with SUV39H1, a histone methyltransferase, resulting in a reduction in the expression of Cdt2, an adaptor protein of CRL4 E3 ligase targeting HBV polymerase. SUV39H1 induces H3K9 trimethylation of the Cdt2 promoter in a PreC-induced manner. CRISPR-mediated knockout of endogenous SUV39H1 or pharmaceutical inhibition of SUV39H1 decreases HBV loads in the mouse liver. Additionally, genetic depletion of Cdt2 in the mouse liver abrogates PreC-related HBV replication. Interestingly, a negative correlation of intrahepatic Cdt2 with serum HBeAg and HBV DNA load was observed in CHB patient samples. Our study thus sheds light on the mechanistic role of PreC in inducing HBV replication and identifies potential therapeutic targets for HBV treatment.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Animals , Humans , Mice , DNA, Viral , Hepatitis B e Antigens , Hepatitis B virus/genetics , Methyltransferases , Repressor Proteins/genetics , Virus Replication
5.
Mol Cancer ; 23(1): 67, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561768

ABSTRACT

Gastrointestinal cancer (GIC) is the most prevalent and highly metastatic malignant tumor and has a significant impact on mortality rates. Nevertheless, the swift advancement of contemporary technology has not seamlessly aligned with the evolution of detection methodologies, resulting in a deficit of innovative and efficient clinical assays for GIC. Given that exosomes are preferentially released by a myriad of cellular entities, predominantly originating from neoplastic cells, this confers exosomes with a composition enriched in cancer-specific constituents. Furthermore, exosomes exhibit ubiquitous presence across diverse biological fluids, endowing them with the inherent advantages of non-invasiveness, real-time monitoring, and tumor specificity. The unparalleled advantages inherent in exosomes render them as an ideal liquid biopsy biomarker for early diagnosis, prognosticating the potential development of GIC metastasis.In this review, we summarized the latest research progress and possible potential targets on cancer-derived exosomes (CDEs) in GIC with an emphasis on the mechanisms of exosome promoting cancer metastasis, highlighting the potential roles of CDEs as the biomarker and treatment in metastatic GIC.


Subject(s)
Exosomes , Gastrointestinal Neoplasms , Humans , Exosomes/pathology , Biomarkers, Tumor , Biomarkers , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/pathology , Liquid Biopsy/methods
6.
Biomark Res ; 12(1): 41, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644503

ABSTRACT

Regulatory T cells (Tregs) are essential to the negative regulation of the immune system, as they avoid excessive inflammation and mediate tumor development. The abundance of Tregs in tumor tissues suggests that Tregs may be eliminated or functionally inhibited to stimulate antitumor immunity. However, immunotherapy targeting Tregs has been severely hampered by autoimmune diseases due to the systemic elimination of Tregs. Recently, emerging studies have shown that metabolic regulation can specifically target tumor-infiltrating immune cells, and lipid accumulation in TME is associated with immunosuppression. Nevertheless, how Tregs actively regulate metabolic reprogramming to outcompete effector T cells (Teffs), and how lipid metabolic reprogramming contributes to the immunomodulatory capacity of Tregs have not been fully discussed. This review will discuss the physiological processes by which lipid accumulation confers a metabolic advantage to tumor-infiltrating Tregs (TI-Tregs) and amplifies their immunosuppressive functions. Furthermore, we will provide a summary of the driving effects of various metabolic regulators on the metabolic reprogramming of Tregs. Finally, we propose that targeting the lipid metabolism of TI-Tregs could be efficacious either alone or in conjunction with immune checkpoint therapy.

7.
Sci Bull (Beijing) ; 69(9): 1286-1301, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38519399

ABSTRACT

Adavosertib (ADA) is a WEE1 inhibitor that exhibits a synthetic lethal effect on p53-mutated gallbladder cancer (GBC). However, drug resistance due to DNA damage response compensation pathways and high toxicity limits further applications. Herein, estrone-targeted ADA-encapsulated metal-organic frameworks (ADA@MOF-EPL) for GBC synthetic lethal treatment by inducing conditional factors are developed. The high expression of estrogen receptors in GBC enables ADA@MOF-EPL to quickly enter and accumulate near the cell nucleus through estrone-mediated endocytosis and release ADA to inhibit WEE1 upon entering the acidic tumor microenvironment. Ultrasound irradiation induces ADA@MOF-EPL to generate reactive oxygen species (ROS), which leads to a further increase in DNA damage, resulting in a higher sensitivity of p53-mutated cancer cells to WEE1 inhibitor and promoting cell death via conditional synthetic lethality. The conditional factor induced by ADA@MOF-EPL further enhances the antitumor efficacy while significantly reducing systemic toxicity. Moreover, ADA@MOF-EPL demonstrates similar antitumor abilities in other p53-mutated solid tumors, revealing its potential as a broad-spectrum antitumor drug.


Subject(s)
Antineoplastic Agents , Gallbladder Neoplasms , Metal-Organic Frameworks , Protein-Tyrosine Kinases , Pyrimidinones , Tumor Suppressor Protein p53 , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line, Tumor , Protein-Tyrosine Kinases/antagonists & inhibitors , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Synthetic Lethal Mutations , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays , Mutation , Mice, Nude , DNA Damage/drug effects , Female
8.
Nat Commun ; 15(1): 1131, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326351

ABSTRACT

Early and accurate diagnosis of focal liver lesions is crucial for effective treatment and prognosis. We developed and validated a fully automated diagnostic system named Liver Artificial Intelligence Diagnosis System (LiAIDS) based on a diverse sample of 12,610 patients from 18 hospitals, both retrospectively and prospectively. In this study, LiAIDS achieved an F1-score of 0.940 for benign and 0.692 for malignant lesions, outperforming junior radiologists (benign: 0.830-0.890, malignant: 0.230-0.360) and being on par with senior radiologists (benign: 0.920-0.950, malignant: 0.550-0.650). Furthermore, with the assistance of LiAIDS, the diagnostic accuracy of all radiologists improved. For benign and malignant lesions, junior radiologists' F1-scores improved to 0.936-0.946 and 0.667-0.680 respectively, while seniors improved to 0.950-0.961 and 0.679-0.753. Additionally, in a triage study of 13,192 consecutive patients, LiAIDS automatically classified 76.46% of patients as low risk with a high NPV of 99.0%. The evidence suggests that LiAIDS can serve as a routine diagnostic tool and enhance the diagnostic capabilities of radiologists for liver lesions.


Subject(s)
Artificial Intelligence , Liver Neoplasms , Humans , Retrospective Studies , Radiologists , Liver Neoplasms/diagnostic imaging
9.
Cancer Lett ; 587: 216709, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38350547

ABSTRACT

Patients diagnosed with lymph node (LN) metastatic liver cancer face an exceedingly grim prognosis. In-depth analysis of LN metastatic patients' characteristics and tumor cells' interactions with human lymphatic endothelial cells (HLECs), can provide important biological and therapeutic insights. Here we identify at the single-cell level that S100A6 expression differs between primary tumor and their LN metastasis. Of particular significance, we uncovered the disparity in S100A6 expression between tumors and normal tissues is greater in intrahepatic cholangiocarcinoma (ICC) patients, frequently accompanied by LN metastases, than that in hepatocellular carcinoma (HCC), with rare occurrence of LN metastasis. Furthermore, in the infrequent instances of LN metastasis in HCC, heightened S100A6 expression was observed, suggesting a critical role of S100A6 in the process of LN metastasis. Subsequent experiments further uncovered that S100A6 secreted from tumor cells promotes lymphangiogenesis by upregulating the expression and secretion of vascular endothelial growth factor-D (VEGF-D) in HLECs through the RAGE/NF-kB/VEGF-D pathway while overexpression of S100A6 in tumor cells also augmented their migration and invasion. Taken together, these data reveal the dual effects of S100A6 in promoting LN metastasis in liver cancer, thus highlighting its potential as a promising therapeutic target.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Vascular Endothelial Growth Factor D/metabolism , Vascular Endothelial Growth Factor D/pharmacology , Lymphatic Metastasis , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , NF-kappa B/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Endothelial Cells/metabolism , Lymphangiogenesis , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , S100 Calcium Binding Protein A6/metabolism , S100 Calcium Binding Protein A6/pharmacology , Cell Cycle Proteins/metabolism
10.
Heliyon ; 10(2): e24453, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312553

ABSTRACT

Cuproptosis, a distinct form of programmed cell death, is an emerging field in oncology with promising implications. This novel mode of cell death has the potential to become a regulatory target for tumor therapy, thus expanding the currently limited treatment options available for patients with cancer. Our research team focused on investigating the role of functional long non-coding RNA (lncRNAs) in hepatocellular carcinoma (HCC). We were particularly intrigued by the potential implications of HCC-lncRNAs on cuproptosis. Through a comprehensive analysis, we identified three cuproptosis-related lncRNAs (CRLs): AC018690.1, AL050341.2, and LINC02038. These lncRNAs were found to influence the sensitivity of HCC to cuproptosis. Based on our results, we constructed a risk model represented by the equation: risk score = 0.82 * AC018690.1 + 0.65 * AL050341.2 + 0.61 * LINC02038. Notably, significant disparities were observed in clinical features, such as the response rate to immunotherapy and targeted therapy, as well as in cellular characteristics, including the composition of the tumor immune microenvironment (TIME), when comparing the high- and low-risk groups. Most importantly, knockdown of these CRLs was confirmed to significantly weaken the resistance to cuproptosis in HCC. This effect resulted from the accelerated accumulation of lipoacylated-DLAT and lipoacylated-DLST. In summary, we identified three CRLs in HCC and established a novel risk model with potential clinical applications. Additionally, we proposed a potential therapeutic method consisting of sorafenib-copper ionophores-immunotherapy.

11.
Adv Sci (Weinh) ; 11(2): e2305902, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37953462

ABSTRACT

Circular RNAs (circRNAs) have emerged as crucial regulators in physiology and human diseases. However, evolutionarily conserved circRNAs with potent functions in cancers are rarely reported. In this study, a mammalian conserved circRNA circLARP1B is identified to play critical roles in hepatocellular carcinoma (HCC). Patients with high circLARP1B levels have advanced prognostic stage and poor overall survival. CircLARP1B facilitates cellular metastatic properties and lipid accumulation through promoting fatty acid synthesis in HCC. CircLARP1B deficient mice exhibit reduced metastasis and less lipid accumulation in an induced HCC model. Multiple lines of evidence demonstrate that circLARP1B binds to heterogeneous nuclear ribonucleoprotein D (HNRNPD) in the cytoplasm, and thus affects the binding of HNRNPD to sensitive transcripts including liver kinase B1 (LKB1) mRNA. This regulation causes decreased LKB1 mRNA stability and lower LKB1 protein levels. Antisense oligodeoxynucleotide complementary to theHNRNPD binding sites in circLARP1B increases the HNRNPD binding to LKB1 mRNA. Through the HNRNPD-LKB1-AMPK pathway, circLARP1B promotes HCC metastasis and lipid accumulation. Results from AAV8-mediated hepatocyte-directed knockdown of circLARP1B or Lkb1 in mouse models also demonstrate critical roles of hepatocytic circLARP1B regulatory pathway in HCC metastasis and lipid accumulation, and indicate that circLARP1B may be potential target of HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Lipid Metabolism/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Lipids , Mammals/metabolism
14.
Int J Biol Sci ; 19(14): 4608-4626, 2023.
Article in English | MEDLINE | ID: mdl-37781045

ABSTRACT

Sorafenib is a first-line chemotherapy drug for treating advanced hepatocellular carcinoma (HCC). However, its therapeutic effect has been seriously affected by the emergence of sorafenib resistance in HCC patients. The underlying mechanism of sorafenib resistance is unclear. Here, we report a circular RNA, cDCBLD2, which plays an important role in sorafenib resistance in HCC. We found that cDCBLD2 was upregulated in sorafenib-resistant (SR) HCC cells, and knocking down cDCBLD2 expression could significantly increase sorafenib-related cytotoxicity. Further evidence showed that cDCBLD2 can bind to microRNA (miR)-345-5p through a competing endogenous RNA mechanism, increase type IIA topoisomerase (TOP2A) mRNA stability through a miRNA sponge mechanism, and reduce the effects of sorafenib treatment on HCC by inhibiting apoptosis. Our findings also suggest that miR-345-5p can negatively regulate TOP2A levels by binding to the coding sequence region of its mRNA. Additionally, targeting cDCBLD2 by injecting a specific small interfering RNA (siRNA) could significantly overcome sorafenib resistance in a patient-derived xenograft (PDX) mouse model of HCC. Taken together, our study provides a proof-of-concept for a potential strategy to overcome sorafenib resistance in HCC patients by targeting cDCBLD2 or TOP2A.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Circular , Animals , Humans , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Small Interfering/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use , RNA, Circular/genetics
15.
Nat Commun ; 14(1): 5699, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709778

ABSTRACT

Phototherapy of deep tumors still suffers from many obstacles, such as limited near-infrared (NIR) tissue penetration depth and low accumulation efficiency within the target sites. Herein, stimuli-sensitive tumor-targeted photodynamic nanoparticles (STPNs) with persistent luminescence for the treatment of deep tumors are reported. Purpurin 18 (Pu18), a porphyrin derivative, is utilized as a photosensitizer to produce persistent luminescence in STPNs, while lanthanide-doped upconversion nanoparticles (UCNPs) exhibit bioimaging properties and possess high photostability that can enhance photosensitizer efficacy. STPNs are initially stimulated by NIR irradiation before intravenous administration and accumulate at the tumor site to enter the cells through the HER2 receptor. Due to Pu18 afterglow luminescence properties, STPNs can continuously generate ROS to inhibit NFκB nuclear translocation, leading to tumor cell apoptosis. Moreover, STPNs can be used for diagnostic purposes through MRI and intraoperative NIR navigation. STPNs exceptional antitumor properties combined the advantages of UCNPs and persistent luminescence, representing a promising phototherapeutic strategy for deep tumors.


Subject(s)
Carcinoma in Situ , Gallbladder Neoplasms , Nanoparticles , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Luminescence
16.
Heliyon ; 9(8): e18843, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600363

ABSTRACT

Increasing evidence indicated that mitophagy might play a crucial role in the occurrence and progression of liver diseases. In order to enhance our understanding of the intricate relationship between mitophagy and liver diseases, a comprehensive bibliometric analysis of the existing literature in this field was conducted. This analysis aimed to identify key trends, potential areas of future research, and forecast the development of this specific field. We systematically searched the Web of Science Core Collection (WoSCC) for publications related to mitophagy in liver diseases from 2000 to 2022. We conducted the bibliometric analysis and data visualization through VOSviewer and CiteSpace. The analysis of publication growth revealed a substantial increase in articles published in this field over the past years, indicating mitophagy's growing interest and significance in liver diseases. China and USA emerged as the leading contributors in the number of papers, with 294 and 194 independent papers, respectively. Exploring the mechanism of mitophagy in the initiation and procession of liver diseases was the main content of studies in this field, and Parkin-independent mediated mitophagy has attracted much attention recently. "Lipid metabolism," "cell death," "liver fibrosis" and "oxidative stress" were the primary keywords clusters. Additionally, "nlrp3 inflammasome", "toxicity" and "nonalcoholic steatohepatitis" were emerging research hotspots in this area and have the potential to continue to be focal areas of investigation in the future. This study represents the first systematic bibliometric analysis of research on mitophagy in liver diseases conducted over the past 20 years. By providing an overview of the existing literature and identifying current research trends, this analysis sheds light on the critical areas of investigation and paves the way for future studies in this field.

17.
Proc Natl Acad Sci U S A ; 120(30): e2220296120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459535

ABSTRACT

Metastasis, especially intrahepatic, is a major challenge for hepatocellular carcinoma (HCC) treatment. Cytoskeleton remodeling has been identified as a vital process mediating intrahepatic spreading. Previously, we reported that HCC tumor adhesion and invasion were modulated by circular RNA (circRNA), which has emerged as an important regulator of various cellular processes and has been implicated in cancer progression. Here, we uncovered a nuclear circRNA, circASH2, which is preferentially lost in HCC tissues and inhibits HCC metastasis by altering tumor cytoskeleton structure. Tropomyosin 4 (TPM4), a critical binding protein of actin, turned out to be the major target of circASH2 and was posttranscriptionally suppressed. Such regulation is based on messenger RNA (mRNA)/precursormRNA splicing and degradation process. Furthermore, liquid-liquid phase separation of nuclear Y-box binding protein 1 (YBX1) enhanced by circASH2 augments TPM4 transcripts decay. Together, our data have revealed a tumor-suppressive circRNA and, more importantly, uncovered a fine regulation mechanism for HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger , Cell Proliferation/genetics , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Cell Line, Tumor , Y-Box-Binding Protein 1/genetics
18.
Gland Surg ; 12(6): 834-852, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37441023

ABSTRACT

Background: Salivary adenoid cystic carcinoma (SACC) is a unique malignant tumor of the salivary gland with poor prognosis, which is not effective with chemotherapy and targeted drugs. Therefore, it is important to explore the molecular mechanism underlying SACC invasion and metastasis to develop novel therapeutic strategies and targets in clinical research. Methods: Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) were performed to detect the expression of Adherens Junctions Associated Protein 1 (AJAP1). Methylation-specific PCR was used to evaluate the methylation of the AJAP1 promoter. AJAP1 was overexpressed or knocked down by lentivirus-mediated transfection. Kaplan-Meier analysis was conducted to create a survival curve and the log-rank test was used to analyze the overall survival (OS). The prognostic correlation was assessed using univariate and multivariate Cox regression analyses. Co-immunoprecipitation (Co-IP) was utilized to pull down the possible binding protein of AJAP1 and laser scanning confocal microscopy was applied to detect the subcellular localization of AJAP1, E-cadherin, and ß-catenin. Cell viability, colony formation, wound healing, and Transwell invasion assays were performed to evaluate the function of AJAP1 in vitro. A subcutaneous xenograft assay in nude mice was performed to verify the function of AJAP1 in vivo. Results: AJAP1 was downregulated in SACC tumors and was closely related to SACC lymph node/distant metastasis, which was an independent risk factor for SACC prognosis. Methylation-specific PCR confirmed that high methylation of the AJAP1 promoter was the main cause of its silencing. Overexpression or knockdown of AJAP1 in SACC cells could significantly inhibit or promote the proliferation, invasion, and metastasis of SACC cells, respectively, in both the in vitro and in vivo experiments. Mechanically, we found that AJAP1 binds to E-cadherin and ß-catenin to form a complex in cytomembrane, reducing the nuclear translocation of ß-catenin and blocking the Wingless/Integrated/ß-catenin (Wnt/ß-catenin) signaling pathway to play a suppressive role in cancer. Conclusions: In conclusion, these results suggest that the downregulation of AJAP1 protein expression may play a certain role in progression and metastasis of SACC. Our study indicates that AJAP1 may be a potential prognostic molecular marker and therapeutic target for SACC.

19.
Cancer Med ; 12(16): 16744-16755, 2023 08.
Article in English | MEDLINE | ID: mdl-37366278

ABSTRACT

BACKGROUND: The influencing factors, especially time to treatment (TTT), for T1b/T2 gallbladder cancer (GBC) patients remain unknown. We aimed to identify the influencing factors on survival and surgical approaches selection for T1b/T2 GBC. METHODS: We retrospectively screened GBC patients between January 2011 and August 2018 from our hospital. Clinical variables, including patient characteristics, TTT, overall survival (OS), disease-free survival (DFS), surgery-related outcomes, and surgical approaches were collected. RESULTS: A total of 114 T1b/T2 GBC patients who underwent radical resection were included. Based on the median TTT of 7.5 days, the study cohort was divided into short TTT group (TTT ≤7 days, n = 57) and long TTT group (TTT >7 days, n = 57). Referrals were identified as the primary factor prolonging TTT (p < 0.001). There was no significance in OS (p = 0.790), DFS (p = 0.580), and surgery-related outcomes (all p > 0.05) between both groups. Decreased referrals (p = 0.005), fewer positive lymph nodes (LNs; p = 0.004), and well tumor differentiation (p = 0.004) were all associated with better OS, while fewer positive LNs (p = 0.049) were associated with better DFS. Subgroup analyses revealed no significant difference in survival between patients undergoing laparoscopic or open approach in different TTT groups (all p > 0.05). And secondary subgroup analyses found no significance in survival and surgery-related outcomes between different TTT groups of incidental GBC patients (all p > 0.05). CONCLUSIONS: Positive LNs and tumor differentiation were prognostic factors for T1b/T2 GBC survival. Referrals associating with poor OS would delay TTT, while the prolonged TTT would not impact survival, surgery-related outcomes, and surgical approaches decisions in T1b/T2 GBC patients.


Subject(s)
Carcinoma in Situ , Gallbladder Neoplasms , Humans , Gallbladder Neoplasms/pathology , Cholecystectomy , Lymph Node Excision , Retrospective Studies , Neoplasm Staging , Carcinoma in Situ/pathology
20.
Int J Biol Sci ; 19(7): 2114-2131, 2023.
Article in English | MEDLINE | ID: mdl-37151879

ABSTRACT

Emerging studies have revealed matrix stiffness promotes hepatocellular carcinoma (HCC) development. We studied metabolic dysregulation in HCC using the TCGA-LIHC database (n=374) and GEO datasets (GSE14520). HCC samples were classified into three heterogeneous metabolic pathway subtypes with different metabolic profiles: Cluster 1, an ECM-producing subtype with upregulated glycan metabolism; Cluster 2, a hybrid subtype with partial pathway dysregulation. Cluster 3, a lipogenic subtype with upregulated lipid metabolism; These three subtypes have different prognosis, clinical features and genomic alterations. We identified key enzymes that respond to matrix stiffness and regulate lipid metabolism through bioinformatic analysis. We found long-chain acyl-CoA dehydrogenase (ACADL) is a mechanoreactive enzyme that reprograms HCC cell lipid metabolism in response to extracellular matrix stiffness. ACADL is also regarded as tumor suppressor in HCC. We found that increased extracellular matrix stiffness led to activation of Yes-associated protein (YAP) and the YAP/TEA Domain transcription factor 4 (TEAD4) transcriptional complex was able to directly repress ACADL at the transcriptional level. The ACADL-dependent mechanoresponsive pathway is a potential therapeutic target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Lipid Metabolism/genetics , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism , Adaptor Proteins, Signal Transducing/metabolism , YAP-Signaling Proteins , Cell Line, Tumor , Phosphoproteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , TEA Domain Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...