Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Genet ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831231

ABSTRACT

Myocardial ischemic (MI) injury is a common cardiovascular disease, and the potential therapeutic effects of ginsenoside Rb2 (Rb2) have been lately the focus of interest. Therefore, this study aimed to investigate the effects of Rb2 on pyroptosis of cardiomyocytes in MI progression. An in vitro MI model was developed by subjecting rat's cardiomyocytes (H9c2) to hypoxia/reoxygenation (H/R). The cell viability was determined by CCK-8 assay, while cell death was analyzed by propidium iodide staining. Similarly, pyroptosis-related protein levels and acetylation levels of apoptosis-associated speck-like protein containing a CARD (ASC) were detected by western blotting, and the relationship between Sirtuin 1 (SIRT1) and ASC was confirmed by co-immunoprecipitation (Co-IP) assay. Moreover, hematoxylin-eosin (H&E) and triphenyl tetrazolium chloride staining were used to study pathological structure and infarct size. It was found that post-Rb2 treatment significantly increased the cell viability and decreased the cell death and lactic dehydrogenase release, while the increased gasdermin D-N, NOD-like receptor thermal protein domain-associated protein 3, ASC, and cleaved-caspase-1 protein levels were significantly decreased in H/R-stimulated H9c2 cells. Moreover, the acetylation levels of H92c cells were decreased post-Rb2 treatment via increasing SIRT1 levels, while knocking down SIRT1, translated into an increase in ASC acetylation levels, leading to the increase in ASC protein stability and expressions. Additionally, the Rb2 effects on pyroptosis in H/R-stimulated H92c cells were reversed by overexpressing ASC, while reduced myocardial tissue damage was observed in MI rats following in vivo Rb2 treatment. Rb2 treatment inhibited pyroptosis in MI progression by decreasing the ASC levels. Mechanistically, Rb2 treatment increased the SIRT1 levels, further increasing the acetylation levels of ASC and decreasing the protein stability of ASC.

2.
Can J Microbiol ; 60(11): 753-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25345758

ABSTRACT

Great attention has been focused on Gram-negative bacteria in the application of microbial fuel cells. In this study, the Gram-positive bacterium Enterococcus faecalis was employed in microbial fuel cells. Bacterial biofilms formed by E. faecalis ZER6 were investigated with respect to electricity production through the riboflavin-shuttled extracellular electron transfer. Trace riboflavin was shown to be essential for transferring electrons derived from the oxidation of glucose outside the peptidoglycan layer in the cell wall of E. faecalis biofilms formed on the surface of electrodes, in the absence of other potential electron mediators (e.g., yeast extract).


Subject(s)
Bioelectric Energy Sources , Electrodes , Electrons , Enterococcus faecalis/metabolism , Riboflavin/metabolism , Biofilms , Electricity , Electron Transport , Glucose/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL