Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Psychiatry ; 14: 1234461, 2023.
Article in English | MEDLINE | ID: mdl-38274432

ABSTRACT

Background: Prenatal depressive symptoms (PDS) is a serious public health problem. This study aimed to develop an integrated panel and nomogram to assess at-risk populations by examining the association of PDS with the serum metabolome, multivitamin supplement intake, and clinical blood indicators. Methods: This study comprised 221 pregnant women, categorized into PDS and non-PDS groups based on the Edinburgh postnatal depression scale. The participants were divided into training and test sets according to their enrollment time. We conducted logistic regression analysis to identify risk factors, and employed liquid chromatography/high resolution mass spectrometry-based serum metabolome analysis to identify metabolic biomarkers. Multiple factor analysis was used to combine risk factors, clinical blood indicators and key metabolites, and then a nomogram was developed to estimate the probability of PDS. Results: We identified 36 important differential serum metabolites as PDS biomarkers, mainly involved in amino acid metabolism and lipid metabolism. Multivitamin intake works as a protective factor for PDS. The nomogram model, including multivitamin intake, HDL-C and three key metabolites (histidine, estrone and valylasparagine), exhibited an AUC of 0.855 in the training set and 0.774 in the test set, and the calibration curves showed good agreement, indicating that the model had good stability. Conclusion: Our approach integrates multiple models to identify metabolic biomarkers for PDS, ensuring their robustness. Furthermore, the inclusion of dietary factors and clinical blood indicators allows for a comprehensive characterization of each participant. The analysis culminated in an intuitive nomogram based on multimodal data, displaying potential performance in initial PDS risk assessment.

2.
Anal Bioanal Chem ; 413(23): 5695-5702, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34331553

ABSTRACT

The Berthelot reaction is a classic method for detection of ammonium (NH4+) and atmospheric ammonia (NH3) by using salicylic acid (SA) as the chromogenic substrate. However, there lacks a method for improving the activity of the Berthelot reaction to enhance the analytical performance for detection of NH4+ and NH3. Here, five SA analogues with electron-withdrawing groups (-F) and electron-donating groups (-CH3 and -OCH3) at different positions of the aromatic ring have been chosen as the alternative to SA for Berthelot reaction. Among these analogues, 4-methoxysalicylic acid (4-OCH3-SA) shows the best colorimetric response and color change at a NH4+ concentration of 30 µM, and the sensitivity of 4-OCH3-SA-based colorimetric assay for NH4+ increases 1.75-fold compared with that of SA-based colorimetric method. This enhancement effect is attributed to the strong electron-donating property of 4-OCH3 group, activating the two-step electrophilic aromatic substitution reaction in the Berthelot reaction. Additionally, visual and sensitive detection of NH3 is realized, along with a low limit of detection down to 0.037 ppm. Furthermore, we demonstrate that this assay is reliable and practical for detection of NH4+ and NH3 in real water and air samples with good accuracy.

3.
Anal Bioanal Chem ; 411(30): 8063-8071, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31768592

ABSTRACT

There is great interest in detection of the level of 2,4,6-trinitrotoluene (TNT) explosive due to its importance in public security and environmental protection fields. The conventional chemical sensors do not simultaneously realize simple, rapid, sensitive, selective, and direct detection of TNT in different medium without sample pretreatment. Here we present a modified wood-based chemical sensor for visual colorimetric detection of TNT in water, air, and soil. The natural wood undergoes a delignified process, which is further functionalized by 3-aminopropyltriethoxysilane (APTES). When TNT solutions are introduced, the wood-based sensor shows a colorimetric transition from light yellow to brown for naked-eye readout because of the generation of Meisenheimer complex between APTES and TNT. The photographs are collected by smartphone camera, and the RGB components are extracted to calculate the adjusted intensity for qualitative detection of TNT. This visual colorimetric sensor for TNT solution displays a linearity in the range of 0.01-5 mM with a limit of detection of 3 µM. In addition, by taking advantage of its inherent mesostructure, the wood-based sensor can be employed for visual detection of TNT vapor as well. Furthermore, it is also able to directly detect TNT in wet soil samples based on capillary action, in which TNT carried by water transports upward along the wood microchannel, triggering the generation of Meisenheimer complex. Graphical Abstract.

4.
Anal Chem ; 91(9): 6155-6161, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30990015

ABSTRACT

o-Phenylenediamine (OPD)-based chromogenic reactions are worthy tools for the development of visual colorimetric assays. The chromogenic reactions are usually triggered by various oxidants, which is not easily tunable and incompatible with some analytes. Herein, we report that direct blue light irradiation can induce the autocatalytic oxidation of OPD to generate 2,3-diaminophenazine (oxidized-state OPD, oxOPD). The autocatalytic photo-oxidation reaction mechanism of OPD is mainly ascribed to the resonant energy transfer between ectronically excited oxOPD and dissolved oxygen to form singlet state oxygen with a high oxidation capacity, which accelerates the oxidation of OPD. We demonstrate that under neutral and alkaline environment, the photoinduced autocatalytic oxidation of OPD is able to be further enhanced by triaminotrinitrobenzene (TATB) explosive because of its inhibition effect on the aggregation caused quenching phenomenon of oxOPD. On this basis, a straightforward visual colorimetric assay for TATB with a tunable dynamic range is developed. This assay is capable of detecting TATB explosive concentrations as low as 2.7 nM. Notably, the obvious color change after addition of TATB enables a naked-eye readout with the lowest detectable TATB concentrations of 60 nM.


Subject(s)
Light , Phenylenediamines/chemistry , Trinitrobenzenes/analysis , Catalysis , Colorimetry , Molecular Dynamics Simulation , Oxidation-Reduction
5.
Anal Chim Acta ; 1023: 22-28, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-29754603

ABSTRACT

In this work, a highly sensitive impedimetric biosensor was developed for mercuric ion (Hg2+) detection. The biosensor design was based on Hg2+-triggered exonuclease III (Exo III) cleavage for target recycling and DNAzyme-mediated catalytic for precipitation polymerization. Hg2+ induced thymine-thymine (T-T) mismatches were used to trigger the Exo III-catalyzed target recycling and produce free single-stranded DNA (defined as M). The outputted M then assisted the in formation of a DNA network on electrode surface to efficiently immobilize the porphyrin manganese (MnTmPyP). The formed MnTMPyP-double-stranded DNA (MnTmPyP-dsDNA) complex exhibited peroxidase-like activity capable of catalyzing a 3,3-diaminobenzidine (DAB) oxidation reaction, which produced an insoluble precipitate on the electrode surface. This reaction significantly enhanced the resistance signal for the quantitative determination of Hg2+. Under optimal conditions, the impedimetric biosensor exhibited a wide dynamic working range of 0.005 nM-100 nM with a detection limit of 1.47 pM. This platform also demonstrated good reproducibility and selectivity, offering a promising avenue for the detection of other molecules.


Subject(s)
Biosensing Techniques , DNA, Catalytic/metabolism , Manganese/chemistry , Mercury/analysis , Metalloporphyrins/chemistry , Biocatalysis , DNA, Catalytic/chemistry , Electrodes , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Manganese/metabolism , Metalloporphyrins/metabolism , Molecular Structure , Polymerization , Surface Properties
6.
Nanoscale Res Lett ; 13(1): 3, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29318400

ABSTRACT

Transition metal oxides (TMOs) have attracted extensive research attentions as promising electrocatalytic materials. Despite low cost and high stability, the electrocatalytic activity of TMOs still cannot satisfy the requirements of applications. Inspired by kinetics, the design of hollow porous structure is considered as a promising strategy to achieve superior electrocatalytic performance. In this work, cubic NiO hollow porous architecture (NiO HPA) was constructed through coordinating etching and precipitating (CEP) principle followed by post calcination. Being employed to detect glucose, NiO HPA electrode exhibits outstanding electrocatalytic activity in terms of high sensitivity (1323 µA mM-1 cm-2) and low detection limit (0.32 µM). The excellent electrocatalytic activity can be ascribed to large specific surface area (SSA), ordered diffusion channels, and accelerated electron transfer rate derived from the unique hollow porous features. The results demonstrate that the NiO HPA could have practical applications in the design of nonenzymatic glucose sensors. The construction of hollow porous architecture provides an effective nanoengineering strategy for high-performance electrocatalysts.

7.
Nanotechnology ; 29(7): 075502, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29239862

ABSTRACT

Inspired by kinetics, the design of hollow hierarchical electrocatalysts through large-scale integration of building blocks is recognized as an effective approach to the achievement of superior electrocatalytic performance. In this work, a hollow, hierarchical Co3O4 architecture (Co3O4 HHA) was constructed using a coordinated etching and precipitation (CEP) method followed by calcination. The resulting Co3O4 HHA electrode exhibited excellent electrocatalytic activity in terms of high sensitivity (839.3 µA mM-1 cm-2) and reliable stability in glucose detection. The high sensitivity could be attributed to the large specific surface area (SSA), ample unimpeded penetration diffusion paths and high electron transfer rate originating from the unique two-dimensional (2D) sheet-like character and hollow porous architecture. The hollow hierarchical structure also affords sufficient interspace for accommodation of volume change and structural strain, resulting in enhanced stability. The results indicate that Co3O4 HHA could have potential for application in the design of non-enzymatic glucose sensors, and that the construction of hollow hierarchical architecture provides an efficient way to design highly active, stable electrocatalysts.


Subject(s)
Biosensing Techniques/methods , Cobalt/chemistry , Glucose/analysis , Oxides/chemistry , Blood Glucose/analysis , Catalysis , Electrochemical Techniques , Electrodes , Oxidation-Reduction , Photoelectron Spectroscopy , X-Ray Diffraction
8.
Materials (Basel) ; 10(8)2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28825676

ABSTRACT

Molybdenum (Mo) doped BiVO4 was fabricated via a simple electrospun method. Morphology, structure, chemical states and optical properties of the obtained catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), N2 adsorption-desorption isotherms (BET) and photoluminescence spectrum (PL), respectively. The photocatalytic properties indicate that doping Mo into BiVO4 can enhance the photocatalytic activity and dark adsorption ability. The photocatalytic test suggests that the 1% Mo-BiVO4 shows the best photocatalytic activity, which is about three times higher than pure BiVO4. Meanwhile, 3% Mo-BiVO4 shows stronger dark adsorption than pure BiVO4 and 1% Mo-BiVO4. The enhancement in photocatalytic property should be ascribed to that BiVO4 with small amount of Mo doping could efficiently separate the photogenerated carries and improve the electronic conductivity. The high concentration doping would lead the crystal structure transformation from monoclinic to tetragonal phase, as well as the formation of MoO3 nanoparticles on the BiVO4 surface, which could also act as recombination centers to decrease the photocatalytic activity.

9.
Neural Regen Res ; 8(27): 2540-7, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-25206564

ABSTRACT

A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spinal cord transection. However, after incomplete lesions, the effect of treadmill training has been debated, which is likely because of the difficulty of separating spontaneous stepping from specific training-induced effects. In this study, rats with moderate spinal cord contusion were jected to either step training on a treadmill or used in the model (control) group. The treadmill training began at day 7 post-injury and lasted 20 ± 10 minutes per day, 5 days per week for 10 weeks. The speed of the treadmill was set to 3 m/min and was increased on a daily basis according to the tolerance of each rat. After 3 weeks of step training, the step training group exhibited a sig-nificantly greater improvement in the Basso, Beattie and Bresnahan score than the model group. The expression of growth-associated protein-43 in the spinal cord lesion site and the number of tyrosine hydroxylase-positive ventral neurons in the second lumbar spinal segment were greater in the step training group than in the model group at 11 weeks post-injury, while the levels of brain-derived neurotrophic factor protein in the spinal cord lesion site showed no difference between the two groups. These results suggest that treadmill training significantly improves functional re-covery and neural plasticity after incomplete spinal cord injury.

10.
Zhongguo Dang Dai Er Ke Za Zhi ; 13(9): 725-7, 2011 Sep.
Article in Chinese | MEDLINE | ID: mdl-21924021

ABSTRACT

OBJECTIVE: To study the effects of valproate sodium (VPA) on the level and axle of pituitary gonadotropin in adolescent girls with epilepsy. METHODS: Twenty-three adolescent girls with epilepsy aged from 8 to 14 years were treated with VPA for 1 year. The levels of serum pituitary gonadotropin including estradiol, follicle-stimulating hormone, luteinizing hormone, prolactin and testosterone were measured before treatment and 3 months, 6 months and 1 year after treatment. RESULTS: The serum levels of estradiol, follicle-stimulating hormone, luteinizing hormone and prolactin in the children with epilepsy were not significantly different during the 1 year VPA treatment compared with pretreatment. However, the serum level of testosterone was reduced 1 year after treatment (0.4±0.3 ng/mL) compared with pretreatment (0.7±0.4 ng/mL) and 3 months after treatment (0.7±0.4 ng/mL) (P<0.05). CONCLUSIONS: VPA treatment for 1 year does not increase serum levels of androgen in adolescent girls with epilepsy, suggesting that VPA is an ideal choice of treatment for the girls.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Gonadotropins, Pituitary/blood , Valproic Acid/therapeutic use , Adolescent , Child , Epilepsy/blood , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...