Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 134(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37634085

ABSTRACT

AIMS: This study aimed to screen a bacterial strain with high detoxifying capability for aflatoxin B1 (AFB1), verify its biotransformation efficiency, and detoxification process. METHODS AND RESULTS: A total of 350 samples collected from different environmental niche were screened using coumarin as the sole carbon source. High Performance Liquid Chromatography (HPLC) was used to detect residues of AFB1, and 16S rRNA sequencing was performed on the isolated strain with the highest AFB1 removal ratio for identification. The detoxified products of this strain were tested for toxicity in Escherichia coli as well as LO2, Caco-2, and HaCaT human cell lines. HPLC-MS was applied to further confirm the AFB1 removal and detoxification process. CONCLUSIONS: We identified a strain from plant leaf designated as DT with high AFB1-detoxifying ability that is highly homologous to Bacillus aryabhattai. The optimum detoxification conditions of this strain were 37°C and pH 8.0, resulting in 82.92% removal ratio of 2 µg mL-1 AFB1 in 72 h. The detoxified products were nontoxic for E. coli and significantly less toxic for the LO2, Caco-2, and HaCaT human cell lines. HPLC-MS analysis also confirmed the significant drop of the AFB1 characteristic peak. Two possible metabolic products, C19H15O8 (m/z 371) and C19H19O8 (m/z 375), were observed by mass spectrometry. Potential biotransformation pathway was based on the cleavage of double bond in the terminal furan of AFB1. These generated components had different chemical structures with AFB1, manifesting that the attenuation of AFB1 toxicity would be attributed to the destruction of lactone structure of AFB1 during the conversion process.


Subject(s)
Aflatoxin B1 , Escherichia coli , Humans , Aflatoxin B1/metabolism , Caco-2 Cells , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Ribosomal, 16S/genetics
2.
Int J Nanomedicine ; 12: 1065-1083, 2017.
Article in English | MEDLINE | ID: mdl-28223799

ABSTRACT

Here, we report the hypoxia-responsive ionizable liposomes to deliver small interference RNA (siRNA) anticancer drugs, which can selectively enhance cellular uptake of the siRNA under hypoxic and low-pH conditions to cure glioma. For this purpose, malate dehydrogenase lipid molecules were synthesized, which contain nitroimidazole groups that impart hypoxia sensitivity and specificity as hydrophobic tails, and tertiary amines as hydrophilic head groups. These malate dehydrogenase molecules, together with DSPE-PEG2000 and cholesterol, were self-assembled into O'1,O1-(3-(dimethylamino)propane-1,2-diyl) 16-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl) di(hexadecanedioate) liposomes (MLP) to encapsulate siRNA through electrostatic interaction. Our study showed that the MLP could deliver polo-like kinase 1 siRNA (siPLK1) into glioma cells and effectively enhance the cellular uptake of MLP/siPLK1 because of increased positive charges induced by hypoxia and low pH. Moreover, MLP/siPLK1 was shown to be very effective in inhibiting the growth of glioma cells both in vitro and in vivo. Therefore, the MLP is a promising siRNA delivery system for tumor therapy.


Subject(s)
Drug Delivery Systems , Glioma/therapy , Liposomes/chemistry , RNA, Small Interfering/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Cycle Proteins/metabolism , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Endocytosis/drug effects , Glioma/pathology , Humans , Malate Dehydrogenase/metabolism , Male , Mice, Inbred BALB C , Mice, Nude , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Rats , Spectrum Analysis , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...