Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 236: 115706, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37738734

ABSTRACT

Liangyi paste (LY) is a traditional Chinese medicine made from a mixture of Ginseng and Rehmanniae radix praeparata. The present study aimed to investigate the effects of LY on gut microbiota diversity in immunocompromised mice. The chemical composition of LY extract was analyzed using UPLC-Q-Orbitrap-MS/MS, and the differences in the structure and diversity of the intestinal microbiota of LY extract were examined using 16S rRNA. In this study, identified and analyzed 66 compounds from the LY. These compounds included 11 iridoids, 6 oligosaccharides, 21 protopanaxtriols, 23 protopanaxadiols, 2 OLE, 1 Ionone and 2 phenylethanoside, using advanced UPLC-Q-Orbitrap-MS/MS technology. Through the use of 16S rRNA analysis, the study found that LY significantly increased the relative abundance of the Firmicutes phylum in immunocompromised mice, while decreasing the abundance of the Proteobacteria and Actinobacteria phyla. At the genus level, LY significantly increased the relative abundance of beneficial bacteria such as Clostridium_sensu_stricto_l, Lactobacillus, and Limosilactobacillus in immunocompromised mice. Conversely, the paste extract decreased the relative abundance of harmful bacteria such as Enterococcus and Escherichia Shigella in immunocompromised mice. These findings highlight the potential of LY to serve as a natural dietary supplement for enhancing gut microbiota diversity and promoting gut health. The identification of numerous compounds within the paste extract demonstrates its complexity and potential as a source for further research and development. Additionally, the LY extract exerted a significant influence on both nucleotide and amino acid metabolism. To sum up, the findings suggest that the LY extract has the potential to modulate the structure and diversity of gut microbiota, as well as promote metabolic balance in immunocompromised mice.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry , Bacteria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...