Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Biomater ; 8(1): rbaa040, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33732488

ABSTRACT

Repair and reconstruction of large bone defect were often difficult, and bone substitute materials, including autogenous bone, allogenic bone and artificial bone, were common treatment strategies. The key to elucidate the clinical effect of these bone repair materials was to study their osteogenic capacity and immunotoxicological compatibility. In this paper, the mechanical properties, micro-CT imaging analysis, digital image analysis and histological slice analysis of the three bone grafts were investigated and compared after different time points of implantation in rat femur defect model. Autogenous bone and biphasic calcium phosphate particular artificial bone containing 61.4% HA and 38.6% ß-tricalcium phosphate with 61.64% porosity and 0.8617 ± 0.0068 g/cm3 density (d ≤ 2 mm) had similar and strong bone repair ability, but autogenous bone implant materials caused greater secondary damage to experimental animals; allogenic bone exhibited poor bone defect repair ability. At the early stage of implantation, the immunological indexes such as Immunoglobulin G, Immunoglobulin M concentration and CD4 cells' population of allogenic bone significantly increased in compared with those of autologous bone and artificial bone. Although the repair process of artificial bone was relatively inefficient than autologous bone graft, the low immunotoxicological indexes and acceptable therapeutic effects endowed it as an excellent alternative material to solve the problems with insufficient source and secondary trauma of autogenous bone.

2.
Nanoscale Res Lett ; 10(1): 375, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26415540

ABSTRACT

Polarization properties of apertureless-type scanning near-field optical microscopy (a-SNOM) were measured experimentally and were also analyzed using a finite-difference time-domain (FDTD) simulation. Our study reveals that the polarization properties in the a-SNOM are maintained and the a-SNOM works as a wave plate expressed by a Jones matrix. The measured signals obtained by the lock-in detection technique could be decomposed into signals scattered from near-field region and background signals reflected by tip and sample. Polarization images measured by a-SNOM with an angle resolution of 1° are shown. FDTD analysis also reveals the polarization properties of light in the area between a tip and a sample are p-polarization in most of cases.

3.
Opt Lett ; 40(7): 1298-301, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25831317

ABSTRACT

We present a new type of aperture antenna with V-groove structures that are made of Au to enhance strong circularly polarized light (CPL). Simulations using the finite element method revealed that strong CPL was enhanced within the aperture with a diameter of 10 nm. The intensity of the electric field was enhanced and was 22,700 times greater than that of the incident light. The channel plasmon polaritons generated in the V-groove structures were responsible for the strong enhancement. The influence of the angle and length of the V-groove on the enhancement of the CPL was investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...