Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1396892, 2024.
Article in English | MEDLINE | ID: mdl-38720877

ABSTRACT

Hydrogel is considered as a promising candidate for wound dressing due to its tissue-like flexibility, good mechanical properties and biocompatibility. However, traditional hydrogel dressings often fail to fulfill satisfied mechanical, antibacterial, and biocompatibility properties simultaneously, due to the insufficient intrinsic bactericidal efficacy and the addition of external antimicrobial agents. In this paper, hydroxyl-contained acrylamide monomers, N-Methylolacrylamide (NMA) and N-[Tris (hydroxymethyl)methyl] acrylamide (THMA), are employed to prepare a series of polyacrylamide hydrogel dressings xNMA-yTHMA, where x and y represent the mass fractions of NMA and THMA in the hydrogels. We have elucidated that the abundance of hydroxyl groups determines the antibacterial effect of the hydrogels. Particularly, hydrogel 35NMA-5THMA exhibits excellent mechanical properties, with high tensile strength of 259 kPa and large tensile strain of 1737%. Furthermore, the hydrogel dressing 35NMA-5THMA demonstrates remarkable inherent antibacterial without exogenous antimicrobial agents owing to the existence of abundant hydroxyl groups. Besides, hydrogel dressing 35NMA-5THMA possesses excellent biocompatibility, in view of marginal cytotoxicity, low hemolysis ratio, and negligible inflammatory response and organ toxicity to mice during treatment. Encouragingly, hydrogel 35NMA-5THMA drastically promote the healing of bacteria-infected wound in mice. This study has revealed the importance of polyhydroxyl in the antibacterial efficiency of hydrogels and provided a simplified strategy to design wound healing dressings with translational potential.

2.
Sensors (Basel) ; 23(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37299758

ABSTRACT

Accurately detecting falls and providing clear directions for the fall can greatly assist medical staff in promptly developing rescue plans and reducing secondary injuries during transportation to the hospital. In order to facilitate portability and protect people's privacy, this paper presents a novel method for detecting fall direction during motion using the FMCW radar. We analyze the fall direction in motion based on the correlation between different motion states. The range-time (RT) features and Doppler-time (DT) features of the person from the motion state to the fallen state were obtained by using the FMCW radar. We analyzed the different features of the two states and used a two-branch convolutional neural network (CNN) to detect the falling direction of the person. In order to improve the reliability of the model, this paper presents a pattern feature extraction (PFE) algorithm that effectively eliminates noise and outliers in RT maps and DT maps. The experimental results show that the method proposed in this paper has an identification accuracy of 96.27% for different falling directions, which can accurately identify the falling direction and improve the efficiency of rescue.


Subject(s)
Algorithms , Radar , Humans , Reproducibility of Results , Neural Networks, Computer
3.
Sensors (Basel) ; 23(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36904659

ABSTRACT

In recent years, the rapid development of sensors and information technology has made it possible for machines to recognize and analyze human emotions. Emotion recognition is an important research direction in various fields. Human emotions have many manifestations. Therefore, emotion recognition can be realized by analyzing facial expressions, speech, behavior, or physiological signals. These signals are collected by different sensors. Correct recognition of human emotions can promote the development of affective computing. Most existing emotion recognition surveys only focus on a single sensor. Therefore, it is more important to compare different sensors or unimodality and multimodality. In this survey, we collect and review more than 200 papers on emotion recognition by literature research methods. We categorize these papers according to different innovations. These articles mainly focus on the methods and datasets used for emotion recognition with different sensors. This survey also provides application examples and developments in emotion recognition. Furthermore, this survey compares the advantages and disadvantages of different sensors for emotion recognition. The proposed survey can help researchers gain a better understanding of existing emotion recognition systems, thus facilitating the selection of suitable sensors, algorithms, and datasets.


Subject(s)
Algorithms , Emotions , Humans , Emotions/physiology , Recognition, Psychology , Facial Expression , Speech
4.
Int J Mol Med ; 39(1): 39-46, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27878233

ABSTRACT

Natural pigments are known for possessing a wide range of pharmacological and health-promoting properties. The pigments, produced by a new strain Fusarium (Fusarium sp. JN158) previously identified in our laboratory, were found to have 6 peaks (representing 6 compounds) by high-performance liquid chromatography with a diode-array detector (HPLC-DAD) separation. The 6th peak compound (compound VI) is a benzoquinone compound. In this study, we examined the effects of compound VI on the proliferation of breast cancer cells and aimed to elucidate the underlying mechamisms. Compound VI exerted anti-proliferative effects on MCF­7 estrogen receptor (ER)+ cells in a dose-dependent manner (IC25, 7 µM; IC50, 11 µM), whereas it had no effect on MDA­MB­231 ER- cells and normal cells. The cell index (CI) began to decrease at 24 h following treatment with benzoquinone. Mechanistically, the results from molecular analysis revealed that compound VI inhibited the expression of ERα, progesterone receptor (PR), vascular endothelial growth factor (VEGF), Bcl-2, cyclin D1 and nuclear factor-κB (NF-κB) p65, while it increased the expression of cleaved caspase-3 and Bax in the MCF­7 cells. Taken together, our findings indicate that compound VI exerts anti-proliferative effects on MCF­7 cells through the NF-κB pathway via the regulation of ER signaling. Our data may indicate that benzoquinone from Fusarium pigment may have potential for use as an anti-proliferative agent in the treatment of breast cancer.


Subject(s)
Benzoquinones/pharmacology , Fusarium/chemistry , NF-kappa B/metabolism , Pigments, Biological/pharmacology , Receptors, Estrogen/metabolism , Signal Transduction/drug effects , Benzoquinones/chemistry , Caspase 3/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/metabolism , Fluorescent Antibody Technique , Humans , MCF-7 Cells , Models, Biological , Pigments, Biological/chemistry , Receptors, Progesterone/metabolism , Staining and Labeling , Subcellular Fractions/metabolism , Vascular Endothelial Growth Factor A/metabolism , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...