Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38793146

ABSTRACT

Silicon carbide (SiC) is utilized in the automotive, semiconductor, and aerospace industries because of its desirable characteristics. Nevertheless, the traditional machining method induces surface microcracks, low geometrical precision, and severe tool wear due to the intrinsic high brittleness and hardness of SiC. Femtosecond laser processing as a high-precision machining method offers a new approach to SiC processing. However, during the process of femtosecond laser ablation, temperature redistribution and changes in geometrical morphology features are caused by alterations in carrier density. Therefore, the current study presented a multi-physics model that took carrier density alterations into account to more accurately predict the geometrical morphology for femtosecond laser ablating SiC. The transient nonlinear evolutions of the optical and physical characteristics of SiC irradiated by femtosecond laser were analyzed and the influence of laser parameters on the ablation morphology was studied. The femtosecond laser ablation experiments were performed, and the ablated surfaces were subsequently analyzed. The experimental results demonstrate that the proposed model can effectively predict the geometrical morphology. The predicted error of the ablation diameter is within the range from 0.15% to 7.44%. The predicted error of the ablation depth is within the range from 1.72% to 6.94%. This work can offer a new way to control the desired geometrical morphology of SiC in the automotive, semiconductor, and aerospace industries.

2.
Anal Chim Acta ; 1279: 341685, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827660

ABSTRACT

Micromixers are characterized based on characteristics such as excellent mixing efficiency, low reagent cost and flexible controllability compared with conventional reactors in terms of macro size. A variety of designs and applications of micromixers have been proposed. The focus of current reviews is restricted to micromixer structures. Each type of micromixer has characteristics corresponding to its structure, which determines the suitable application areas. This paper provides an overview connecting micromixer designs and their applications. First, the typical designs and mixing mechanisms of both passive and active micromixers are summarized. Then, application cases of micromixers, including chemical, biological and medical applications, are presented. The characteristics, including the advantages and restrictions of different micromixers, are discussed. Finally, the future perspective of micromixer design is proposed. It is predictable that micromixers will have widespread applications by integrating two or more different mixing methods together. This review would be beneficial to guide the design of micromixers applied for specific purposes.

3.
ACS Omega ; 8(32): 29758-29769, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37599966

ABSTRACT

Micromixers offer the advantage of rapid and homogeneous mixing compared with conventional macroscale reaction systems, and thus they show great potential for the synthesis of nanoparticles. An ellipse curve serpentine micromixer, which had been proposed in our prior works was employed to synthesize Cu2O nanoparticles. Cu2O are excellent photocatalysts that have been widely utilized in the degradation of organic dyes. Owing to the excellent mixing performance, the reduction of Cu(OH)2 in micromixing synthesis was more sufficient than that in conventional stirring synthesis. The Cu2O nanoparticles synthesized by micromixing had smaller size and narrower size distribution compared with those synthesized by stirring in a beaker. The smallest Cu2O nanoparticles were obtained by micromixing with Re = 100 at T = 60 °C, while the most uniform Cu2O nanoparticles were obtained at T = 80 °C owing to Ostwald ripening. Through the photocatalytic degradation experiments of Rhodamine B, the Cu2O nanoparticles synthesized by micromixing were found to have better photocatalysis than those synthesized by stirring. The research results showed that the micromixing synthesis was a more suitable choice to produce Cu2O nanoparticles with excellent photocatalysis. The ellipse curve micromixer with a simple structure and high mixing performance can be applied in the synthesis of various nanoparticles.

4.
Micromachines (Basel) ; 14(6)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37374849

ABSTRACT

TiAlN-coated carbide tools have been used to machine Ti-6Al-4V alloys in aviation workshops. However, the effect of TiAlN coating on surface morphology and tool wear in the processing of Ti-6Al-4V alloys under various cooling conditions has not been reported in the public published literature. In our current research, turning experiments of Ti-6Al-4V with uncoated and TiAlN tools under dry, MQL, flood cooling, and cryogenic spray jet cooling conditions were carried out. The machined surface roughness and tool life were selected as the two main quantitative indexes for estimating the effects of TiAlN coating on the cutting performance of Ti-6Al-4V under various cooling conditions. The results showed that TiAlN coating makes it hard to improve the machined surface roughness and tool wear of a cutting titanium alloy at a low speed of 75 m/min compared to that achieved by uncoated tools. The TiAlN tools presented excellent tool life in turning Ti-6Al-4V at a high speed of 150 m/min compared to that achieved by uncoated tools. From the perspective of obtaining finished surface roughness and superior tool life in high-speed turning Ti-6Al-4V, the selection of TiAlN tools is feasible and reasonable under the cryogenic spray jet cooling condition. The dedicative results and conclusions of this research could guide the optimized selection of cutting tools in machining Ti-6Al-4V for the aviation industry.

5.
Materials (Basel) ; 15(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36431556

ABSTRACT

The low plasticity burnished surface roughness is significantly affected by the low plasticity burnishing (LPB) parameters. This research proposed the analytical prediction model to predict the LPBed surface roughness and optimal LPB pressure based on Hertz contact mechanics and the slip-line field theory. In this study, the surface formatted process was divided into the smoothing stage (SS) and the indentation stage (IS). The smoothing mechanism of SS and the deterioration mechanism of IS were analyzed theoretically. The analytical prediction model for the LPBed surface roughness was proposed based on Hertz contact mechanics and slip-line field theory. The proposed analytical prediction model was validated by the LPBed surface roughness of AISI 1042, and the error of the analytically predicted results was less than 13.3%. After validation, the proposed model was applied to predict the LPBed surface roughness of Inconel 718. The single-factor experiments were conducted. The error between the proposed model prediction results and experimental results was less than 7% for the LPBed surface roughness of Inconel 718. The optimal LPB pressure interval was calculated to be [12.2 MPa, 17.5 MPa], corresponding to the experimental one as [12 MPa, 18 MPa]. It indicated that the proposed model could accurately predict the LPBed surface roughness and conduct the LPB processing.

6.
Micromachines (Basel) ; 13(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36422404

ABSTRACT

With the increasing demand for ultra-high-precision products and micro-products in fields such as aerospace, national defense, military, transportation, and people's livelihoods, it has become an important development trend in the field of machining to realize ultra-high-precision machining and miniaturization with a higher level and higher quality [...].

7.
Materials (Basel) ; 15(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35329686

ABSTRACT

A porous metal-bonded diamond grinding wheel has an excellent performance in precision grinding. In this research, a novel manufacturing process of porous metal-bonded diamond coating was presented. Firstly, the diamond/Ni/Al coatings (400-600 µm) were fabricated via low-pressure cold spraying and their microstructures were studied. The diamond particles in the feedstock had a core-shell structure. Secondly, the post-spray heat-treatments were set at 400 °C and 500 °C to produce pores in the cold-sprayed coatings via Ni-Al diffusion. The porosities of 400 °C and 500 °C heated coating were 8.8 ± 0.8% and 16.1 ± 0.7%, respectively. Finally, the wear behavior of porous heated coating was tested in contrast with cold-sprayed coating under the same condition via a ball-on-disc tribometer. The wear mechanism was revealed. The porous heated coating had better wear performance including chip space and slight clogging. The surface roughness of wear counterpart ground by the porous heated coating was smaller (Sa: 0.30 ± 0.07 µm) than that ground by cold-sprayed coating (Sa: 0.37 ± 0.09 µm). After ultrasonic clean, the average exposure height of diamond particles in the wear track of porous heated coating was 44.5% higher than that of cold-sprayed coating. The presented manufacturing process can contribute to fabricate high performance grinding wheels via cold spraying and porous structure controlling through Ni-Al diffusion-reaction.

8.
Anal Chim Acta ; 1155: 338355, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33766315

ABSTRACT

Due to high mixing performance and simple geometry structure, serpentine micromixer is one typical passive micromixer that has been widely investigated. Traditional zigzag and square-wave serpentine micromixers can achieve sufficient mixing, but tend to induce significant pressure drop. The excessive pressure drop means more energy consumption, which leads to low cost-performance of mixing. To mitigate excessive pressure drop, a novel serpentine micromixer utilizing ellipse curve is proposed. While fluids flowing through ellipse curve microchannels, the flow directions keep continuous changing. Therefore, the Dean vortices are induced throughout the whole flow path. Numerical simulation and visualization experiments are conducted at Reynolds number (Re) ranging from 0.1 to 100. Dean vortices varies with the changing curvature in different ellipse curves, and local Dean numbers are calculated for quantitative evaluation. The results suggest that the ellipse with a larger eccentricity induces stronger Dean vortices, thus better mixing performance can be obtained. A parameter, named mixing performance cost (Mec), is proposed to evaluate the cost-performance of micromixers. Compared with the zigzag, square-wave and other improved serpentine micromixers, the ellipse curve micromixer produces lower pressure drop while have the capability to maintain excellent mixing performance. The ellipse curve micromixer is proved to be more cost-effective for rapid mixing in complex microfluidic systems.

9.
Micromachines (Basel) ; 12(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652967

ABSTRACT

Aero-engine blades are manufactured by electroforming process with electrodes. The blade electrode is usually machined with five-axis micromilling to get required profile roughness. Tool path planning parameters, such as cutting step and tool tilt angle, have a significant effect on the profile roughness of the micro-fillet of blade electrode. In this paper, the scallop height model of blade electrode micro-fillet processed by ball-end milling cutter was proposed. Effects of cutting step and tool tilt angle the machined micro-fillet profile roughness were predicted with the proposed scallop height model. The cutting step and tool tilt angle were then optimised to ensure the contour precision of the micro-fillet shape requirement. Finally, the tool path planning was generated and the machining strategy was validated through milling experiments. It was also found that the profile roughness was deteriorated due to size effect when the cutting step decreased to a certain value.

10.
Micromachines (Basel) ; 10(3)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866417

ABSTRACT

Superhydrophobic surfaces have attracted extensive attention over the last few decades. It is mainly due to their capabilities of providing several interesting functions, such as self-cleaning, corrosion resistance, anti-icing and drag reduction. Nanosecond pulsed laser ablation is considered as a promising technique to fabricate superhydrophobic structures. Many pieces of research have proved that machined surface morphology has a significant effect on the hydrophobicity of a specimen. However, few quantitative investigations were conducted to identify effective process parameters and surface characterization parameters for laser-ablated microstructures which are sensitive to the hydrophobicity of the microstructured surface. This paper proposed and reveals for the first time, the concepts of process and product fingerprints for laser ablated superhydrophobic surface through experimental investigation and statistical analysis. The results of correlation analysis showed that a newly proposed dimensionless functional parameter in this paper, Rhy, i.e., the average ratio of Rz to Rsm is the most sensitive surface characterization parameter to the water contact angle of the specimen, which can be regarded as the product fingerprint. It also proposes another new process parameter, average laser pulse energy per unit area of the specimen (Is), as the best process fingerprint which can be used to control the product fingerprint Rhy. The threshold value of Rhy and Is are 0.41 and 536 J/mm² respectively, which help to ensure the superhydrophobicity (contact angle larger than 150°) of the specimen in the laser ablation process. Therefore, the process and product fingerprints overcome the research challenge of the so-called inverse problem in manufacturing as they can be used to determine the required process parameters and surface topography according to the specification of superhydrophobicity.

11.
Micromachines (Basel) ; 9(8)2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30424301

ABSTRACT

The ability to predict the grinding force for hard and brittle materials is important to optimize and control the grinding process. However, it is a difficult task to establish a comprehensive grinding force model that takes into account the brittle fracture, grinding conditions, and random distribution of the grinding wheel topography. Therefore, this study developed a new grinding force model for micro-grinding of reaction-bonded silicon carbide (RB-SiC) ceramics. First, the grinding force components and grinding trajectory were analysed based on the critical depth of rubbing, ploughing, and brittle fracture. Afterwards, the corresponding individual grain force were established and the total grinding force was derived through incorporating the single grain force with dynamic cutting grains. Finally, a series of calibration and validation experiments were conducted to obtain the empirical coefficient and verify the accuracy of the model. It was found that ploughing and fracture were the dominate removal modes, which illustrate that the force components decomposed are correct. Furthermore, the values predicted according to the proposed model are consistent with the experimental data, with the average deviation of 6.793% and 8.926% for the normal and tangential force, respectively. This suggests that the proposed model is acceptable and can be used to simulate the grinding force for RB-SiC ceramics in practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...