Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 26(4): 484, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37753296

ABSTRACT

Cucurbitacin B (CuB) is a member of the cucurbitacin family, which has shown potent anticancer pharmacological activity. Prolonged or severe endoplasmic reticulum stress (ERS) induces apoptosis; therefore, the present study investigated whether CuB may activate the ERS pathway to induce apoptosis. HT-29 and SW620 colorectal cancer (CRC) cells were treated with a range of concentrations of CuB for 48 h, and the viability and proliferation of cells were determined using Cell Counting Kit 8 (CCK8) and colony formation assays. Subsequently, the appropriate CuB concentration (5 µM) was selected for treatment of CRC cells for 48 h. Western blot analysis was used to measure the expression levels of ERS-related proteins, flow cytometry was used to evaluate apoptosis, the dichlorodihydrofluorescein diacetate fluorescent probe was used to detect reactive oxygen species (ROS) production, and the relationship between ROS and ERS was determined by western blot analysis. Furthermore, flow cytometry was used to evaluate apoptosis after treatment with the ERS inhibitor 4-phenylbutyric acid, the ROS inhibitor N-acetylcysteine and following knockdown of CHOP expression. In addition, western blot analysis was performed to measure Bax and Bcl2 protein expression levels, and a CCK8 assay was performed to evaluate the viability of cells following knockdown of CHOP. Notably, CuB treatment increased apoptosis and inhibited cell proliferation in CRC cell lines, and these effects were mediated by ROS and ROS-regulated activation of the PERK and XBP1 ERS pathways. In conclusion, CuB may induce apoptosis in HT-29 and SW620 CRC cells via ROS and ERS.

2.
Cancer Med ; 12(12): 13438-13454, 2023 06.
Article in English | MEDLINE | ID: mdl-37184260

ABSTRACT

BACKGROUND AND AIM: The biological functions and clinical implications of lysophosphatidylcholine acyltransferase 1 (LPCAT1) remain unclarified in gastric cancer (GC). The aim of the current study was to explore the possible clinicopathological significance of LPCAT1 and its perspective mechanism in GC tissues. MATERIALS AND METHODS: The protein expression and mRNA levels of LPCAT1 were detected from in-house immunohistochemistry and public high-throughput RNA arrays and RNA sequencing. To have a comprehensive understanding of the clinical value of LPCAT1 in GC, all enrolled data were integrated to calculate the expression difference and standard mean difference (SMD). The biological mechanism of LPCAT1 in GC was confirmed by computational biology and in vitro experiments. Migration and invasion assays were also conducted to confirm the effect of LPCAT1 in GC. RESULTS: Both protein and mRNA expression levels of LPCAT1 in GC were remarkably higher than those in noncancerous controls. Comprehensively, the SMD of LPCAT1 mRNA was 1.11 (95% CI = 0.86-1.36) in GC, and the summarized AUC was 0.85 based on 15 datasets containing 1727 cases of GC and 940 cases of non-GC controls. Moreover, LPCAT1 could accelerate the invasion and migration of GC by boosting the neutrophil degranulation pathway and disturbing the immune microenvironment. CONCLUSION: An increased level of LPCAT1 may promote the progression of GC.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Cell Proliferation , Acyltransferases , Computational Biology , RNA, Messenger/genetics , Tumor Microenvironment
3.
Apoptosis ; 27(5-6): 329-341, 2022 06.
Article in English | MEDLINE | ID: mdl-35257265

ABSTRACT

The sensitivity of cells to chemotherapeutic agents has a major effect on disease outcome in breast cancer patients. Unfortunately, there are numerous factors involved in the regulation of chemosensitivity, and the mechanisms need to be further investigated. Autophagy/Beclin 1 regulator 1 (Ambra1) is a key protein in the crosstalk between autophagy and apoptosis. It controls the switch between these two processes, which determines whether cells survive or die. Induction of apoptosis is the primary mechanism by which most chemotherapeutic drugs eliminate cancer cells. Recently, Ambra1 has been shown to modulate paclitaxel-induced apoptosis in breast cancer cells via the Bim/mitochondrial pathway, thereby modifying the sensitivity of cells to paclitaxel. However, how Ambra1 regulates Bim expression remains unclear. Here, we further confirmed that Bim plays an indispensable role in Ambra1's regulation of apoptosis and chemosensitivity in breast cancer cells. Furthermore, Ambra1 was found to regulate Bim expression at the transcriptional level through the Akt-FoxO1 pathway. Therefore, we propose a novel pathway, Ambra1-Akt-FoxO1-Bim, which regulates apoptosis and chemosensitivity in breast cancer cells. Thus, Ambra1 may represent a potential target for breast cancer treatment.


Subject(s)
Apoptosis , Breast Neoplasms , Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans , Paclitaxel/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
4.
Oncol Lett ; 19(1): 519-526, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31897166

ABSTRACT

The present study investigated the sensitization of 5-fluorouracil (5-FU)-resistant colon cancer cells in vitro, using oxymatrine, a Chinese herb, and a quinolizidine alkaloid compound extracted from the root of Sophora flavescens. The HCT-8 colon cancer cell line and its 5-FU-resistant subline HCT-8/5-FU were treated with 5-FU and oxymatrine, alone or in combination, at various doses. The cells were subsequently assessed for changes in cell viability, apoptosis and morphology and analyzed by fluorescence microscopy and western blotting. The data demonstrated that HCT-8/5-FU markedly increased the dose of 5-FU required for the suppression of tumor cell viability (78.77±1.90 µg/ml vs. 9.20±0.96 µg/ml in parental HCT-8 cells), whereas HCT-8/5-FU induced the tumor cell epithelial-mesenchymal transition (EMT). By contrast, oxymatrine alone and in combination with 5-FU altered HCT-8/5-FU cell morphology, apoptosis and EMT phenotypes. The combination of oxymatrine and 5-FU reduced the protein expression of snail family transcriptional repressor 2 and vimentin, phosphorylated p65 and induced the expression of E-cadherin, by inhibiting the nuclear factor κB (NF-κB) signaling pathway. In conclusion, the data from the present study demonstrated that EMT was associated with 5-FU chemoresistance in HCT-8/5-FU colon cancer cells, and that oxymatrine treatment was able to reverse such resistance. Oxymatrine may regulate tumor cell EMT and inactivate the NF-κB signaling pathway, and may therefore serve as a potential therapeutic drug to reverse 5-FU resistance in colon cancer cells.

5.
Cancer Sci ; 109(10): 3129-3138, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30027574

ABSTRACT

The sensitivity of breast cancer cells to epirubicin (EPI) is closely related to the efficacy of the drug and the prognosis of patients. A growing body of research has suggested that autophagy is involved in the treatment of a variety of cancers, including breast cancer, and modifies the sensitivity of anticancer drugs. However, the mechanism by which autophagy participates in cancer therapy and modulates drug sensitivity has not been fully elucidated. In this study, we showed that the expression of Autophagy/Beclin 1 regulator 1 (Ambra1), a key protein of autophagy, was negatively correlated with EPI sensitivity in breast cancer cells. In addition, it altered the sensitivity of breast cancer cells to EPI by regulating EPI-induced autophagy. As a potential mechanism, we demonstrated that autophagy-related protein 12 (ATG12) was a downstream protein that Ambra1-regulated EPI-induced autophagy. Therefore, Ambra1 plays an important role in regulating the sensitivity of breast cancer cells to EPI. And the regulatory effect of Ambra1 on EPI sensitivity is achieved through the regulation of autophagy by targeting ATG12. Overall, we propose a novel mechanism by which autophagy modulates the sensitivity of breast cancer cells to EPI. ATG12 is a novel targeting protein of Ambra1 in regulating EPI-induced autophagy. In addition, the important role of Ambra1 in modulating the sensitivity of breast cancer cells to EPI is confirmed in vivo. This finding indicates that Ambra1 might be a target for developing breast cancer treatments.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antibiotics, Antineoplastic/pharmacology , Autophagy-Related Protein 12/metabolism , Autophagy/drug effects , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Epirubicin/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Animals , Antibiotics, Antineoplastic/therapeutic use , Apoptosis , Autophagy-Related Protein 12/genetics , Beclin-1/genetics , Beclin-1/metabolism , Breast Neoplasms/pathology , Cell Survival/drug effects , Epirubicin/therapeutic use , Humans , MCF-7 Cells , Mice, Inbred BALB C , Mice, Nude , RNA, Small Interfering/metabolism , Xenograft Model Antitumor Assays
6.
Int J Biol Macromol ; 118(Pt B): 2176-2184, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30021136

ABSTRACT

ß-1, 3-Xylanase is one of the most important hydrolytic enzymes to prepare oligosaccharides as functional foods in seaweed industry. However, less than five ß-1, 3-xylanases have been experimentally expressed and characterized; moreover, none of them is psychrophilic and salt tolerant. Here, we mined a novel ß-1, 3-xylanase (Xyl512) from the genome of the deep-sea bacterium Flammeovirga pacifica strain WPAGA1 and biochemically characterized it in detail. The Xyl512 did not contain any carbohydrate-binding module; the catalytic domain of it belonged to the glycoside hydrolase family 26. The optimum temperature and pH of the purified ß-1, 3-xylanase was 20 °C and pH 7.0 in the condition of no NaCl. However, they shifted to 30 °C and 7.5 with 1.5 mol/L NaCl, respectively. In this condition (1.5 mol/L NaCl), the overall activity was 2-fold as high as that without NaCl. Based on the residue interactions and the electrostatic surfaces, we addressed the possible mechanism of its adaption to low temperature and relative high NaCl concentration. The Xyl512 showed significantly reduced numbers of hydrogen bonds leading to a more flexible structure, which is likely to be responsible for its cold adaptation. While the negatively charged surface may contribute to its salt tolerance. The ß-1, 3-xylanase we identified here was the first reported psychrophilic and halophilic one with functionally characterized. It could make new contributions to exploring and studying the ß-1, 3-xylanase for further associated investigations.


Subject(s)
Bacteroidetes/enzymology , Endo-1,4-beta Xylanases/metabolism , Oceans and Seas , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/isolation & purification , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Models, Molecular , Recombinant Proteins/isolation & purification , Sequence Analysis, Protein , Sodium Chloride/pharmacology , Static Electricity , Temperature
7.
World J Surg Oncol ; 16(1): 76, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29636077

ABSTRACT

BACKGROUND: MiR-182-5p, as a member of miRNA family, can be detected in lung cancer and plays an important role in lung cancer. To explore the clinical value of miR-182-5p in lung squamous cell carcinoma (LUSC) and to unveil the molecular mechanism of LUSC. METHODS: The clinical value of miR-182-5p in LUSC was investigated by collecting and calculating data from The Cancer Genome Atlas (TCGA) database, the Gene Expression Omnibus (GEO) database, and real-time quantitative polymerase chain reaction (RT-qPCR). Twelve prediction platforms were used to predict the target genes of miR-182-5p. Protein-protein interaction (PPI) networks and gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to explore the molecular mechanism of LUSC. RESULTS: The expression of miR-182-5p was significantly over-expressed in LUSC than in non-cancerous tissues, as evidenced by various approaches, including the TCGA database, GEO microarrays, RT-qPCR, and a comprehensive meta-analysis of 501 LUSC cases and 148 non-cancerous cases. Furthermore, a total of 81 potential target genes were chosen from the union of predicted genes and the TCGA database. GO and KEGG analyses demonstrated that the target genes are involved in pathways related to biological processes. PPIs revealed the relationships between these genes, with EPAS1, PRKCE, NR3C1, and RHOB being located in the center of the PPI network. CONCLUSIONS: MiR-182-5p upregulation greatly contributes to LUSC and may serve as a biomarker in LUSC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/secondary , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , MicroRNAs/genetics , Carcinoma, Squamous Cell/genetics , Case-Control Studies , Computational Biology , Databases, Factual , Female , Follow-Up Studies , Gene Expression Profiling , Gene Ontology , Humans , Lung Neoplasms/genetics , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Invasiveness , Prognosis , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...