Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Land (Basel) ; 12(3)2023 Mar.
Article in English | MEDLINE | ID: mdl-37324780

ABSTRACT

Low-impact development (LID) is a planning and design strategy that addresses water quality and quantity while providing co-benefits in the urban and suburban landscape. The Long-Term Hydrologic Impact Assessment (L-THIA) model estimates runoff and pollutant loadings using simple inputs of land use, soil type, and climatic data for the watershed-scale analysis of average annual runoff based on curve number analysis. Using Scopus, Web of Science, and Google Scholar, we screened 303 articles that included the search term "L-THIA", identifying 47 where L-THIA was used as the primary research method. After review, articles were categorized on the basis of the primary purpose of the use of L-THIA, including site screening, future scenarios and long-term impacts, site planning and design, economic impacts, model verification and calibration, and broader applications including policy development or flood mitigation. A growing body of research documents the use of L-THIA models across landscapes in applications such as the simulations of pollutant loadings for land use change scenarios and the evaluation of designs and cost-effectiveness. While the existing literature demonstrates that L-THIA models are a useful tool, future directions should include more innovative applications such as intentional community engagement and a focus on equity, climate change impacts, and the return on investment and performance of LID practices to address gaps in knowledge.

2.
J Plan Lit ; 38(2): 187-199, 2023 May.
Article in English | MEDLINE | ID: mdl-37153810

ABSTRACT

Urban digital twins (UDTs) have been identified as a potential technology to achieve digital transformative positive urban change through landscape architecture and urban planning. However, how this new technology will influence community resilience and adaptation planning is currently unclear. This article: (1) offers a scoping review of existing studies constructing UDTs, (2) identifies challenges and opportunities of UDT technologies for community adaptation planning, and (3) develops a conceptual framework of UDTs for community infrastructure resilience. This article highlights the need for integrating multi-agent interactions, artificial intelligence, and coupled natural-physical-social systems into a human-centered UDTs framework to improve community infrastructure resilience.

3.
Article in English | MEDLINE | ID: mdl-37200540

ABSTRACT

Due to its vulnerability to hurricanes, Galveston Island, TX, USA, is exploring the implementation of a coastal surge barrier (also referred to as the "Ike Dike") for protection from severe flood events. This research evaluates the predicted effects that the coastal spine will have across four different storm scenarios, including a Hurricane Ike scenario and 10-year, 100-year, and 500-year storm events with and without a 2.4ft. sea level rise (SLR). To achieve this, we develop a 1:1 ratio, 3-dimensional urban model and ran real-time flood projections using ADCIRC model data with and without the coastal barrier in place. Findings show that inundated area and property damages due to flooding will both significantly decrease if the coastal spine is implemented, with a 36% decrease in the inundated area and $4 billion less in property damage across all storm scenarios, on average. When including SLR, the amount of protection of the Ike Dike diminishes due to flooding from the bay side of the island. While the Ike Dike does appear to offer substantial protection from flooding in the short term, integrating the coastal barrier with other non-structural mechanisms would facilitate more long-term protection when considering SLR.

SELECTION OF CITATIONS
SEARCH DETAIL
...