Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 36(4): 1227-33, 2015 Apr.
Article in Chinese | MEDLINE | ID: mdl-26164894

ABSTRACT

Penetration and transmission characteristics of outdoor particulate matter through building envelope structure into indoor and its influencing factors were studied by experimental and numerical simulation methods. With the aid of fast mobility particle spectrometer (fast mobility particle sizer, FMPS), particle number concentrations were measured and particle penetration rates were obtained. The effects of slit size and flow pressure on the infiltration process were studied. Compared with numerical simulation and experimental results, the trend was consistent. Experiment and simulation results showed that when the slit was 1 mm high, the penetration rate of particulates with small particle size was small. Its leading influence factor was Brownian diffusion movement, with the increase of particle size, the penetration rate increased. Particle penetration rate was enhanced with the increase of inlet pressure and particle size, but decreased with the increase of slit length. Simulation results showed that the particle penetration rate was enhanced with the increase of slit height. Among all the factors, slit height was the dominant one. When the particle size was more than 30 nm, the penetration rate was close to 1. When the slit height was reduced to 0.25 mm, the penetration rate of particles with size of near 300 nm reached the maximum of 0.93. With the increase of the particle size, particle penetration rate showed a trend of decrease, and gravity settling began to dominate. The experiment result showed that when the slit height changed, the dominant factors of particles subsidence to the wall were changed. At low concentration in a certain range, the particle number concentration had little effect on the penetration rate. The range of particle number concentration of inside and outside I/O ratio was 0.69- 0.73. The correlation coefficient R2 was 0.99. The linear correlation was obvious. The particle penetration rate in slit straight way was significantly greater than that at the corner of the channel.


Subject(s)
Air Pollution, Indoor/analysis , Particulate Matter/analysis , Particle Size
2.
Huan Jing Ke Xue ; 35(9): 3309-14, 2014 Sep.
Article in Chinese | MEDLINE | ID: mdl-25518646

ABSTRACT

Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Environmental Monitoring , Particle Size
3.
Huan Jing Ke Xue ; 35(12): 4495-501, 2014 Dec.
Article in Chinese | MEDLINE | ID: mdl-25826918

ABSTRACT

The emission characteristics of ultrafine particles released from pulverized coal combustion were studied, the size spectra of ultrafine particles (5.6-560 nm) were measured with FMPS (fast mobility particle sizer) on a self-built aerosol experiment platform. Meanwhile, a particle dynamic evolution model was established to obtain the particle deposition rate and the emission rate through the optimized algorithm. Finally, the emission factor was calculated. The results showed that at the beginning of particle generation, the size spectra were polydisperse and complex, the initial size spectra was mainly composed of three modes including 10 nm, 30-40 nm and 100-200 nm. Among them, the number concentration of mode around 10 nm was higher than those of other modes, the size spectrum of around 100-200 nm was lognormal distributed, with a CMD (count median diameter) of around 16 nm. Then, as time went on, the total number concentration was decayed by exponential law, the CMD first increased and then tended to be stable gradually. The calculation results showed that the emission factor of particles from coal combustion under laboratory condition was (5.54 x 10(12) ± 2.18 x 10(12)) unit x g(-1).


Subject(s)
Air Pollutants/analysis , Coal , Particle Size , Aerosols , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...