Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8011): 286, 2024 May.
Article in English | MEDLINE | ID: mdl-38714811
2.
Cell Biochem Biophys ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430410

ABSTRACT

To investigate the effects and mechanisms of Mycobacterium avium MAV-5183 protein on apoptosis in mouse Ana-1 macrophages. A pET-21a-MAV-5183 recombinant plasmid was constructed. The recombinant MAV-5183 protein was cloned, expressed, purified, and identified using an anti-His-tagged antibody. Rabbits were immunized to obtain antiserum, and its potency and immunoreactivity were assessed through WB. Mouse Ana-1 macrophages were incubated with varying concentrations of MAV-5183 protein. Flow cytometry, following ANNEXIN V-FITC/PI double staining, detected apoptosis. Western Blot analysis was conducted to identify apoptosis-related molecules Caspase-9/8/3 and vesicle-related molecules ASC, NLRP3, and Cleaved-casp1. ELISA measured TNF-α and IL-6 levels in the culture supernatant. LDH activity and ROS levels were analyzed separately. RT-qPCR measured mRNA levels of Caspase-9/8/3, ASC, NLRP3, Caspase-1, IL-1ß, Bax, MAPK-p38, Bcl-2, TNF-α, and IL-6. MAV-5183 protein was successfully cloned, purified, and identified. In in vitro studies on Ana-1 macrophages, MAV-5183 protein increased the expression of Caspase-9/8/3, ASC, NLRP3 (P < 0.01), induced ROS secretion (P < 0.05), and promoted inflammatory cytokine secretion (TNF-α, IL-6, P < 0.0001); however, it did not significantly affect LDH (P > 0.05). MAV-5183 also induced apoptosis in Ana-1 macrophages (P < 0.05). RT-qPCR results indicated a significant increase in mRNA expression of Caspase-9/8/3, ASC, NLRP3, TNF-α, IL-6, MAPK-p38, and pro-apoptotic factor Bax (P < 0.01), with no significant effect on Bcl-2 and IL-1ß mRNA (P > 0.05). The data indicate that MAV-5183 induces macrophage apoptosis through a caspase-dependent pathway and promotes inflammatory cytokine secretion via ROS.

3.
Food Chem ; 444: 138602, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38310778

ABSTRACT

In this work, the MeJA-loaded gelatin/pullulan/chitosan composite biofilm was prepared to inhibit the chilling lignification of the loquat fruit during storage at 0 °C. The firmness and lignin content were decreased by 89 % and 81.77 % after MeJA-loaded biofilm treatment. Malondialdehyde (MDA) production was almost completely suppressed and chilling injury of loquat fruit was significantly reduced. Enzyme activity results show that the biofilm alleviated chilling lignification mainly by inhibiting peroxidase (POD) activity in the phenylpropanoid pathway (PCCs = 0.715, with lignin content). Also, the conventional MeJA vapor treatment only alleviated lignification on day 3, but the biofilm treatment had a better and more sustained effect throughout the whole storage due to its sustained release ability. Besides, the biofilm had good mechanical properties, transparency and water vapor transmission rate. This work indicates that loading preservatives into biofilms has a promising application prospect for inhibiting the postharvest quality deterioration of fruit and vegetables.


Subject(s)
Acetates , Antioxidants , Cyclopentanes , Eriobotrya , Lignin , Oxylipins , Plant Extracts , Lignin/metabolism , Antioxidants/metabolism , Fruit/metabolism
4.
Food Chem ; 444: 138632, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38330606

ABSTRACT

Green food packaging plays an important role in environmental protection and sustainable development. Therefore, it is advisable to employ low-energy consumption manufacturing techniques, select environmentally friendly materials, and focus on cost-effectiveness with high production yields during the production process. In this study, an amphiphilic polyquaternium called PBzCl was proposed and synthesized by free radical polymerization of cost-efficient quaternary ammonium salts and methacrylate monomers. Then, biodegradable PCL and PVP were used to rapidly prepare the PBzCl@PCL/PVP nanofiber films via environmentally friendly microfluidic-blow-spinning (MBS). The best antibacterial effect was observed at a PBzCl loading concentration of 13.5%, and the PBzCl@PCL/PVP nanofiber films had 91% and 100% antibacterial rates against Escherichia coli and Staphylococcus aureus, respectively. Besides, the loading of PBzCl improved the water stability of the PCL/PVP nanofiber films, and the films also showed excellent biocompatibility. Overall, PBzCl@PCL/PVP nanofibre films have promising food packaging potential.


Subject(s)
Food Packaging , Nanofibers , Food Packaging/methods , Microfluidics , Anti-Bacterial Agents/pharmacology , Quaternary Ammonium Compounds
5.
Food Chem ; 442: 138436, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38244441

ABSTRACT

Fruit is susceptible to various postharvest pathogens; thus, the development of multifunctional preservation materials that can achieve the broad-spectrum inhibition of different pathogens is a current research hotspot. Here, microfluidic blow spinning was used to create a biodegradable polycaprolactone/ethyl cellulose (PCL/EC) nanofibrous film that incorporated two naturally-sourced compounds, natamycin and trans-cinnamic acid, resulting in multi-microbial inhibition. The PCL/EC-based film had a smooth and even morphology, indicating the favorable integration of PCL and EC. After the incorporation of ingredients, the film exhibited good inhibitory activity against Escherichia coli, Staphylococcus aureus, and Botrytis cinerea, and it had finer fiber diameters, higher permeability, and antioxidant properties. We further demonstrated that strawberries that were padded with the film had good resistance to Botrytis cinerea. Also, the film did not interference with the qualities of the strawberries during storage. The study demonstrates a promising application for multi-antimicrobial and bio-friendly packaging materials in postharvest fruit preservation.


Subject(s)
Anti-Infective Agents , Botrytis , Cellulose/analogs & derivatives , Cinnamates , Nanofibers , Polyesters , Natamycin , Fruit , Microfluidics , Anti-Infective Agents/pharmacology
7.
Mater Today Bio ; 12: 100161, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34870140

ABSTRACT

Acellular adipose matrix (AAM) has emerged as an important biomaterial for adipose tissue regeneration. Current decellularization methods damage the bioactive components of the extracellular matrix (ECM), and the residual immunogenic antigens may induce adverse immune responses. Here, we adopted a modified decellularization method which can protect more bioactive components with less immune reaction by methoxy polyethylene glycol (mPEG). Then, we determined the adipogenic mechanisms of mPEG-modified AAM after xenogeneic transplantation. AAM transplantation caused significantly lesser adipogenesis in the wild-type group than in the immune-deficient group. The mPEG-modified AAM showed significantly lower immunogenicity and higher adipogenesis than the AAM alone after xenogeneic transplantation. Furthermore, mPEG modification increased regulatory T (Treg) cell numbers in the AAM grafts, which in turn enhanced the M2/M1 macrophage ratio by secreting IL-10, IL-13, and TGF-ß1. These findings suggest that mPEG modification effectively reduces the immunogenicity of xenogeneic AAM and promotes adipogenesis in the AAM grafts. Hence, mPEG-modified AAM can serve as an ideal biomaterial for xenogeneic adipose tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...