Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
1.
Hepatology ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985995

ABSTRACT

BACKGROUND AND AIMS: Inflammatory response is crucial for bile acid (BA)-induced cholestatic liver injury, but molecular mechanisms remain to be elucidated. Solute Carrier Family 35 Member C1 (SLC35C1) can transport GDP-fucose into the Golgi to facilitate protein glycosylation. Its mutation leads to the deficiency of leukocyte adhesion and enhances inflammation in humans. However, little is known about its role in liver diseases. APPROACH AND RESULTS: Hepatic SLC35C1 mRNA transcripts and protein expression were significantly increased in patients with obstructive cholestasis (OC) and mouse models of cholestasis. Immunofluorescence revealed that the upregulated SLC35C1 expression mainly occurred in hepatocytes. Liver-specific ablation of Slc35c1 (Slc35c1 cKO) significantly aggravated liver injury in mouse models of cholestasis induced by bile duct ligation and 1% cholic acid-feeding, evidenced by increased liver necrosis, inflammation, fibrosis, and bile ductular proliferation. The Slc35c1 cKO increased hepatic chemokine Ccl2 and Cxcl2 expression and T-cell, neutrophil and F4/80 macrophage infiltration, but did not affect the levels of serum and liver BA in mouse models of cholestasis. LC-MS/MS analysis revealed that hepatic Slc35c1 deficiency substantially reduced the fucosylation of cell-cell adhesion protein CEACAM1 at N153. Mechanistically, cholestatic levels of conjugated BAs stimulated SLC35C1 expression by activating the STAT3 signaling to facilitate CEACAM1 fucosylation at N153, and deficiency in the fucosylation of CEACAM1 at N135 enhanced the BA-stimulated CCL2 and CXCL2 mRNA expression in primary mouse hepatocytes and PLC/PRF/5-ASBT cells. CONCLUSIONS: Elevated hepatic SLC35C1 expression attenuates cholestatic liver injury by enhancing CEACAM1 fucosylation to suppress CCL2 and CXCL2 expression and liver inflammation.

2.
Cell Commun Signal ; 22(1): 343, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907279

ABSTRACT

Mitochondria are central to endothelial cell activation and angiogenesis, with the RNA polymerase mitochondrial (POLRMT) serving as a key protein in regulating mitochondrial transcription and oxidative phosphorylation. In our study, we examined the impact of POLRMT on angiogenesis and found that its silencing or knockout (KO) in human umbilical vein endothelial cells (HUVECs) and other endothelial cells resulted in robust anti-angiogenic effects, impeding cell proliferation, migration, and capillary tube formation. Depletion of POLRMT led to impaired mitochondrial function, characterized by mitochondrial depolarization, oxidative stress, lipid oxidation, DNA damage, and reduced ATP production, along with significant apoptosis activation. Conversely, overexpressing POLRMT promoted angiogenic activity in the endothelial cells. In vivo experiments demonstrated that endothelial knockdown of POLRMT, by intravitreous injection of endothelial specific POLRMT shRNA adeno-associated virus, inhibited retinal angiogenesis. In addition, inhibiting POLRMT with a first-in-class inhibitor IMT1 exerted significant anti-angiogenic impact in vitro and in vivo. Significantly elevated expression of POLRMT was observed in the retinal tissues of streptozotocin-induced diabetic retinopathy (DR) mice. POLRMT endothelial knockdown inhibited pathological retinal angiogenesis and mitigated retinal ganglion cell (RGC) degeneration in DR mice. At last, POLRMT expression exhibited a substantial increase in the retinal proliferative membrane tissues of human DR patients. These findings collectively establish the indispensable role of POLRMT in angiogenesis, both in vitro and in vivo.


Subject(s)
DNA-Directed RNA Polymerases , Human Umbilical Vein Endothelial Cells , Mitochondria , Humans , Animals , Mice , Mitochondria/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Mice, Inbred C57BL , Cell Proliferation , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Male , Neovascularization, Physiologic/genetics , Cell Movement , Apoptosis , Angiogenesis
3.
Medicine (Baltimore) ; 103(24): e37856, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875375

ABSTRACT

BACKGROUND: Currently, most studies primarily focus on directly comparing the efficacy and safety of angiotensin-converting enzyme inhibitors (ACEIs) and calcium channel blockers (CCBs), the two major classes of antihypertensive drugs. Moreover, the majority of studies are based on randomized controlled trials and traditional meta-analyses, with few exploring the efficacy and safety comparisons among various members of ACEIs and CCBs. METHODS: ACEIs and CCB were searched for in randomized controlled trials in CNKI, Wanfang, VIP, China Biology Medicine Disc (Si-noMed), PubMed, EMbase, and Cochrane Library databases. The search can be conducted till November 2022. Stata software (version 16.0) and R 4.1.3 was used for statistical analysis and graphics plotting, applying mvmeta, gemtc, and its packages. Meta-regression analysis was used to explore the inconsistencies of the studies. RESULTS: In 73 trials involving 33 different drugs, a total of 9176 hypertensive patients were included in the analysis, with 4623 in the intervention group and 4553 in the control group. The results of the analysis showed that, according to the SUCRA ranking, felodipine (MD = -12.34, 95% CI: -17.8 to -6.82) was the drug most likely to be the best intervention for systolic blood pressure, while nitrendipine (MD = -8.01, 95% CI: -11.71 to -4.18) was the drug most likely to be the best intervention for diastolic blood pressure. Regarding adverse drug reactions, nifedipine (OR = 0.32, 95% CI: 0.14-0.74) was the drug most likely to be the safest. CONCLUSION: The research findings indicate that nifedipine is the optimal intervention for reducing systolic blood pressure in hypertensive patients, nitrendipine is the optimal intervention for reducing diastolic blood pressure in hypertensive patients, and felodipine is the optimal intervention for safety.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Calcium Channel Blockers , Hypertension , Humans , Calcium Channel Blockers/therapeutic use , Hypertension/drug therapy , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Network Meta-Analysis , Antihypertensive Agents/therapeutic use , Randomized Controlled Trials as Topic , Treatment Outcome , Nifedipine/therapeutic use
4.
Mar Genomics ; 75: 101108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735675

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain Cobetia sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of Cobetia bacteria. The study reports the whole genome sequence of Cobetia sp. D5 to understand its DMSP metabolism pathway. The genome of Cobetia sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that Cobetia sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of Cobetia sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.


Subject(s)
Genome, Bacterial , Sulfonium Compounds , Sulfur , Sulfonium Compounds/metabolism , Sulfur/metabolism , Seawater/microbiology , Sulfides/metabolism , China
5.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1275-1285, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621975

ABSTRACT

This study aims to investigate the regulatory effects of Shenling Baizhu Powder(SBP) on cellular autophagy in alcoholic liver disease(ALD) and its intervention effect through the TLR4/NLRP3 pathway. A rat model of chronic ALD was established by gavage of spirits. An ALD cell model was established by stimulating BRL3A cells with alcohol. High-performance liquid chromatography(HPLC) was utilized for the compositional analysis of SBP. Liver tissue from ALD rats underwent hematoxylin-eosin(HE) and oil red O staining for pathological evaluation. Enzyme-linked immunosorbent assay(ELISA) was applied to quantify lipopolysaccharides(LPS), tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1ß), and interleukin-18(IL-18) levels. Quantitative reverse transcription polymerase chain reaction(qRT-PCR) was conducted to evaluate the mRNA expression of myeloid differentiation factor 88(MyD88) and Toll-like receptor 4(TLR4). The effect of different drugs on BRL3A cell proliferation activity was assessed through CCK-8 analysis. Western blot analysis was performed to examine the protein expression of NOD-like receptor pyrin domain-containing 3(NLRP3), nuclear factor-kappa B P65(NF-κB P65), phosphorylated nuclear factor-kappa B P65(p-P65), caspase-1, P62, Beclin1, and microtubule-associated protein 1 light chain 3(LC3Ⅱ). The results showed that SBP effectively ameliorated hepatic lipid accumulation, reduced liver function, mitigated hepatic tissue inflammation, and reduced levels of LPS, TNF-α, IL-1ß, and IL-18. Moreover, SBP exhibited the capacity to modulate hepatic autophagy induced by prolonged alcohol intake through the TLR4/NLRP3 signaling pathway. This modulation resulted in decreased expression of LC3Ⅱ and Beclin1, an elevation in P62 expression, and the promotion of autolysosome formation. These research findings imply that SBP can substantially enhance liver function and mitigate lipid irregularities in the context of chronic ALD. It achieves this by regulating excessive autophagic responses caused by prolonged spirit consumption, primarily through the inhibition of the TLR4/NLRP3 pathway.


Subject(s)
Drugs, Chinese Herbal , Liver Diseases, Alcoholic , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18 , Powders , Lipopolysaccharides , Tumor Necrosis Factor-alpha , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Beclin-1 , NF-kappa B/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/genetics
6.
Gastrointest Endosc ; 99(3): 387-397.e6, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37858760

ABSTRACT

BACKGROUND AND AIMS: The Zhongshan colorectal endoscopic submucosal dissection (CR-ESD) score model was proposed to grade the technical difficulty of CR-ESD. The objective of this study was to prospectively validate and update the score model. METHODS: A multicenter prospective cohort analysis of CR-ESD was conducted. Individual data on patients, lesions, and outcomes of CR-ESD were used to validate the original model and further refine the difficulty of the prediction model. Data were randomly divided into discovery and internal validation cohorts. A multivariate Cox regression analysis was conducted on the discovery cohort to develop an updated risk-scoring system, which was then validated. RESULTS: Five hundred forty-eight patients with 565 colorectal lesions treated by ESD from 4 hospitals were included. In the prospective validation cohort, the area under the receiver-operating characteristic (ROC) curve for the original model was .707. Six risk factors were identified and assigned point values: tumor size (2 points for 30-50 mm, 3 points for ≥50 mm), at least two-thirds circumference of the lesion (3 points), tumor location in the cecum (2 points) or flexure (2 points), laterally spreading tumor-nongranular lesions (1 point), preceding biopsy sampling (1 point), and NBI International Colorectal Endoscopic type 3 (3 points). The updated model had an area under the ROC curve of .738 in the discovery cohort and of .782 in the validation cohort. Cases were categorized into easy (score = 0-1), intermediate (score = 2-3), difficult (score = 4-6), and very difficult (score ≥7) groups. Satisfactory discrimination and calibration were observed. CONCLUSIONS: The original model achieved an acceptable level of prediction in the prospective cohort. The updated model exhibited superior performance and can be used in place of the previous version. (Clinical trial registration number: ChiCTR2100047087.).


Subject(s)
Colorectal Neoplasms , Endoscopic Mucosal Resection , Humans , Endoscopic Mucosal Resection/adverse effects , Colorectal Neoplasms/pathology , Prospective Studies , Retrospective Studies , Cohort Studies , Treatment Outcome
7.
Nat Commun ; 14(1): 8393, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110369

ABSTRACT

Ferroptosis is an iron-dependent programmed cell death associated with severe kidney diseases, linked to decreased glutathione peroxidase 4 (GPX4). However, the spatial distribution of renal GPX4-mediated ferroptosis and the molecular events causing GPX4 reduction during ischemia-reperfusion (I/R) remain largely unknown. Using spatial transcriptomics, we identify that GPX4 is situated at the interface of the inner cortex and outer medulla, a hyperactive ferroptosis site post-I/R injury. We further discover OTU deubiquitinase 5 (OTUD5) as a GPX4-binding protein that confers ferroptosis resistance by stabilizing GPX4. During I/R, ferroptosis is induced by mTORC1-mediated autophagy, causing OTUD5 degradation and subsequent GPX4 decay. Functionally, OTUD5 deletion intensifies renal tubular cell ferroptosis and exacerbates acute kidney injury, while AAV-mediated OTUD5 delivery mitigates ferroptosis and promotes renal function recovery from I/R injury. Overall, this study highlights a new autophagy-dependent ferroptosis module: hypoxia/ischemia-induced OTUD5 autophagy triggers GPX4 degradation, offering a potential therapeutic avenue for I/R-related kidney diseases.


Subject(s)
Acute Kidney Injury , Ferroptosis , Reperfusion Injury , Humans , Kidney , Autophagy , Ischemia
8.
J Med Chem ; 66(17): 11881-11892, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37594853

ABSTRACT

The V-domain Ig suppressor of T-cell activation (VISTA) is a promising negative immune checkpoint and plays a critical role in the regulation of the quiescence of naïve T lymphocytes. Most patients however do not experience durable disease control from current immune checkpoint inhibitors and discovery of inhibitors targeting novel immune checkpoints is necessary. Herein, we report our discovery and optimization of benzimidazoles as the bifunctional inhibitors of VISTA. Compound 1 is identified as a bifunctional inhibitor targeting VISTA, which shows good binding affinity to VISTA and induces VISTA degradation in HepG2 cells through an autophagic mechanism. Compound 1 rescues VISTA-mediated immunosuppression effectively and enhances antitumor activity of immune cells. 1 activates the antitumor immunity in vivo and suppresses tumor growth in a CT26 mouse model significantly. Our results show that compound 1 is a promising VISTA inhibitor and degrader and offers novel approach for cancer immunotherapy through VISTA degradation.


Subject(s)
Autophagy , Lymphocyte Activation , Animals , Mice , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Division , Disease Models, Animal
9.
Int Immunopharmacol ; 122: 110617, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37478666

ABSTRACT

This study aims to discern the possible molecular mechanism of the effect of ubiquitin-specific peptidase 18 (USP18) on the resistance to BRAF inhibitor vemurafenib in BRAF V600E mutant melanoma by regulating cyclic GMP-AMP synthase (cGAS). The cancer tissues of BRAF V600E mutant melanoma patients before and after vemurafenib treatment were collected, in which the protein expression of USP18 and cGAS was determined. A BRAF V600E mutant human melanoma cell line (A2058R) resistant to vemurafenib was constructed with its viability, apoptosis, and autophagy detected following overexpression and depletion assays of USP18 and cGAS. Xenografted tumors were transplanted into nude mice for in vivo validation. Bioinformatics analysis showed that the expression of cGAS was positively correlated with USP18 in melanoma, and USP18 was highly expressed in melanoma. The expression of cGAS and USP18 was up-regulated in cancer tissues of vemurafenib-resistant patients with BRAF V600E mutant melanoma. Knockdown of cGAS inhibited the resistance to vemurafenib in A2058R cells and the protective autophagy induced by vemurafenib in vitro. USP18 could deubiquitinate cGAS to promote its protein stability. In vivo experimentations confirmed that USP18 promoted vemurafenib-induced protective autophagy by stabilizing cGAS protein, which promoted resistance to vemurafenib in BRAF V600E mutant melanoma cells. Collectively, USP18 stabilizes cGAS protein expression through deubiquitination and induces autophagy of melanoma cells, thereby promoting the resistance to vemurafenib in BRAF V600E mutant melanoma.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Animals , Mice , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Mice, Nude , Indoles/pharmacology , Indoles/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Drug Resistance, Neoplasm/genetics , Mutation , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Protein Kinase Inhibitors/pharmacology , Autophagy/genetics , Nucleotidyltransferases/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/pharmacology
10.
BMC Pediatr ; 23(1): 358, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37442965

ABSTRACT

BACKGROUND: We aimed to analyze the characteristics of the body composition of children and adolescents aged 3-17 in Suzhou, China. METHODS: A cross-sectional study between January 2020 and June 2022 using bioelectrical impedance was conducted to determine the fat mass (FM), fat-free mass (FFM), skeletal muscle mass, and protein and mineral contents of 24,845 children aged 3-17 who attended the Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, China. Measurement data was presented in tables as mean ± SD, and groups were compared using the independent samples t-test. RESULTS: FM and fat-free mass increased with age in both boys and girls. The fat-free mass of girls aged 14-15 decreased after reaching a peak, and that of boys in the same age group was higher than that of the girls (p < 0.05). There were no significant differences in FM between boys and girls younger than 9- and 10-years old. The percentage body fat (PBF) and FM index of girls increased rapidly between 11 and 15 years of age (p < 0.05), and those of boys aged 11-14 were significantly lower (p < 0.05), suggesting that the increase in body mass index (BMI) was mainly contributed by muscle mass (MM) in boys. CONCLUSIONS: The body composition of children and adolescents varies according to their age and sex. A misdiagnosis of obesity made on the basis of BMI alone can be avoided if BMI is used in combination with FM index, percentage body fat, and other indexes.


Subject(s)
Body Composition , Obesity , Male , Female , Humans , Child , Adolescent , Cross-Sectional Studies , Body Mass Index , China , Adipose Tissue
11.
Chaos ; 33(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37391880

ABSTRACT

With the development of information technology, more and more travel data have provided great convenience for scholars to study the travel behavior of users. Planning user travel has increasingly attracted researchers' attention due to its great theoretical significance and practical value. In this study, we not only consider the minimum fleet size required to meet the urban travel needs but also consider the travel time and distance of the fleet. Based on the above reasons, we propose a travel scheduling solution that comprehensively considers time and space costs, namely, the Spatial-Temporal Hopcroft-Karp (STHK) algorithm. The analysis results show that the STHK algorithm not only significantly reduces the off-load time and off-load distance of the fleet travel by as much as 81% and 58% and retains the heterogeneous characteristics of human travel behavior. Our study indicates that the new planning algorithm provides the size of the fleet to meet the needs of urban travel and reduces the extra travel time and distance, thereby reducing energy consumption and reducing carbon dioxide emissions. Concurrently, the travel planning results also conform to the basic characteristics of human travel and have important theoretical significance and practical application value.


Subject(s)
Algorithms , Travel , Humans
12.
World J Gastrointest Oncol ; 15(5): 878-891, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37275449

ABSTRACT

BACKGROUND: Improved adenoma detection at colonoscopy has decreased the risk of developing colorectal cancer. However, whether image-enhanced endoscopy (IEE) further improves the adenoma detection rate (ADR) is controversial. AIM: To compare IEE with white-light imaging (WLI) endoscopy for the detection and identification of colorectal adenoma. METHODS: This was a multicenter, randomized, controlled trial. Participants were enrolled between September 2019 to April 2021 from 4 hospital in China. Patients were randomly assigned to an IEE group with WLI on entry and IEE on withdrawal (n = 2113) or a WLI group with WLI on both entry and withdrawal (n = 2098). The primary outcome was the ADR. The secondary endpoints were the polyp detection rate (PDR), adenomas per colonoscopy, adenomas per positive colonoscopy, and factors related to adenoma detection. RESULTS: A total of 4211 patients (966 adenomas) were included in the analysis (mean age, 56.7 years, 47.1% male). There were 2113 patients (508 adenomas) in the IEE group and 2098 patients (458 adenomas) in the WLI group. The ADR in two group were not significantly different [24.0% vs 21.8%, 1.10, 95% confidence interval (CI): 0.99-1.23, P = 0.09]. The PDR was higher with IEE group (41.7%) than with WLI group (36.1%, 1.16, 95%CI: 1.07-1.25, P = 0.01). Differences in mean withdrawal time (7.90 ± 3.42 min vs 7.85 ± 3.47 min, P = 0.30) and adenomas per colonoscopy (0.33 ± 0.68 vs 0.28 ± 0.62, P = 0.06) were not significant. Subgroup analysis found that with narrow-band imaging (NBI), between-group differences in the ADR, were not significant (23.7% vs 21.8%, 1.09, 95%CI: 0.97-1.22, P = 0.15), but were greater with linked color imaging (30.9% vs 21.8%, 1.42, 95%CI: 1.04-1.93, P = 0.04). the second-generation NBI (2G-NBI) had an advantage of ADR than both WLI and the first-generation NBI (27.0% vs 21.8%, P = 0.01; 27.0% vs 21.2.0%, P = 0.01). CONCLUSION: This prospective study confirmed that, among Chinese, IEE didn't increase the ADR compared with WLI, but 2G-NBI increase the ADR.

13.
Entropy (Basel) ; 25(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37372303

ABSTRACT

Describing travel patterns and identifying significant locations is a crucial area of research in transportation geography and social dynamics. Our study aims to contribute to this field by analyzing taxi trip data from Chengdu and New York City. Specifically, we investigate the probability density distribution of trip distance in each city, which enables us to construct long- and short-distance trip networks. To identify critical nodes within these networks, we employ the PageRank algorithm and categorize them using centrality and participation indices. Furthermore, we explore the factors that contribute to their influence and observe a clear hierarchical multi-centre structure in Chengdu's trip networks, while no such phenomenon is evident in New York City's. Our study provides insight into the impact of trip distance on important nodes within trip networks in both cities and serves as a reference for distinguishing between long and short taxi trips. Our findings also reveal substantial differences in network structures between the two cities, highlighting the nuanced relationship between network structure and socio-economic factors. Ultimately, our research sheds light on the underlying mechanisms shaping transportation networks in urban areas and offers valuable insights into urban planning and policy making.

14.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1153-1160, 2023 May.
Article in English | MEDLINE | ID: mdl-37236930

ABSTRACT

To understand leaf litter stoichiometry in a subtropical evergreen broadleaved forest, we measured the contents of carbon (C), nitrogen (N) and phosphorus (P) in leaf litters of 62 main woody species in a natural forest of C. kawakamii Nature Reserve in Sanming, Fujian Province. Differences in leaf litter stoichiometry were analyzed across leaf forms (evergreen, deciduous), life forms (tree, semi-tree or shrub), and main families. Additionally, the phylogenetic signal was measured by Blomberg's K to explore the correlation between family level differentiation time and litter stoichiometry. Our results showed that the contents of C, N and P in the litter of 62 woody species were 405.97-512.16, 4.45-27.11, and 0.21-2.53 g·kg-1, respectively. C/N, C/P and N/P were 18.6-106.2, 195.9-2146.8, and 3.5-68.9, respectively. Leaf litter P content of evergreen tree species was significantly lower than that of deciduous tree species, and C/P and N/P of evergreen tree species were significantly higher than those of deciduous tree species. There was no significant difference in C, N content and C/N between the two leaf forms. There was no significant difference in litter stoichiometry among trees, semi-trees and shrubs. Effects of phylogeny on C, N content and C/N in leaf litter was significant, but not on P content, C/P and N/P. Family differentiation time was negatively correlated with leaf litter N content, and positively correlated with C/N. Leaf litter of Fagaceae had high C and N contents, C/P and N/P, and low P content and C/N, with an opposite trend for Sapidaceae. Our findings indicated that litter in subtropical forest had high C, N content and N/P, but low P content, C/N, and C/P, compared with the global scale average value. Litter of tree species in older sequence of evolutionary development had lower N content but higher C/N. There was no difference of leaf litter stoichiometry among life forms. There were significant differences in P content, C/P, and N/P between different leaf forms, with a characteristic of convergence.


Subject(s)
Fagaceae , Forests , Humans , Aged , Phylogeny , Wood , Plant Leaves , Nitrogen
15.
Eur J Med Chem ; 256: 115468, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37207535

ABSTRACT

Discovery of small-molecule inhibitors against programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis provides a promising alternative to overcome the inevitable defects of PD-1/PD-L1 monoclonal antibodies (mAbs). Here, we report a series of indanes as novel small-molecule inhibitors of PD-1/PD-L1 interaction. Thirty-one indanes were synthesized and the structure-activity relationships (SARs) demonstrated that conformational restriction with (S)-indane is superior in potency to inhibit the interaction of PD-1 and PD-L1. Compound D3 was found to be the most potent inhibitor with an IC50 value of 2.2 nM against PD-1/PD-L1 interaction. Cell-based assay showed that D3 significantly induced immune activity of peripheral blood mononuclear cells (PBMCs) against MDA-MB-231 cells and could restore the immune function of T cells by promoting secretion of the IFN-γ. The above results indicate that compound D3 is a promising PD-1/PD-L1 inhibitor that deserves further development.


Subject(s)
Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , B7-H1 Antigen , Leukocytes, Mononuclear , Structure-Activity Relationship
16.
J Asian Nat Prod Res ; 25(12): 1184-1190, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37178131

ABSTRACT

Two new pregnane glycosides (1 and 2), together with four known ones (3- 6), were isolated from the roots of Cynanchum auriculatum Royle ex Wight (Asclepiadaceae). On the basis of detailed spectroscopic analysis and chemical method, the structures of new compounds were characterized to be metaplexigenin 3-O-ß-D-cymaropyranosyl- (1→4)-α-L-diginopyranosyl-(1→4)-ß-D-cymaropyranoside (1), metaplexigenin 3-O-α-L-diginopyranosyl-(1→4)-ß-D-cymaropyranoside (2). All the isolated compounds (1-6) were tested for their in vitro inhibitory activity against the growth of human colon cancer cell lines HCT-116. Compounds 5 and 6 showed significant cytoxicities with IC50 values of 43.58 µM and 52.21 µM.


Subject(s)
Cynanchum , Humans , Cynanchum/chemistry , Plant Roots/chemistry , Pregnanes/pharmacology , Pregnanes/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Molecular Structure
17.
Cell Mol Gastroenterol Hepatol ; 16(2): 223-242, 2023.
Article in English | MEDLINE | ID: mdl-37146714

ABSTRACT

BACKGROUND & AIMS: OATP1B3/SLCO1B3 is a human liver-specific transporter for the clearance of endogenous compounds (eg, bile acid [BA]) and xenobiotics. The functional role of OATP1B3 in humans has not been characterized, as SLCO1B3 is poorly conserved among species without mouse orthologs. METHODS: Slc10a1-knockout (Slc10a1-/-), Slc10a1hSLCO1B3 (endogenous mouse Slc10a1 promoter-driven human-SLCO1B3 expression in Slc10a1-/- mice), and human SLCO1B3 liver-specific transgenic (hSLCO1B3-LTG) mice were generated and challenged with 0.1% ursodeoxycholic-acid (UDCA), 1% cholic-acid (CA) diet, or bile duct ligation (BDL) for functional studies. Primary hepatocytes and hepatoma-PLC/RPF/5 cells were used for mechanistic studies. RESULTS: Serum BA levels in Slc10a1-/- mice were substantially increased with or without 0.1% UDCA feeding compared with wild-type (WT) mice. This increase was attenuated in Slc10a1hSLCO1B3-mice, indicating that OATP1B3 functions as a significant hepatic BA uptake transporter. In vitro assay using primary hepatocytes from WT, Slc10a1-/-, and Slc10a1hSLCO1B3-mice indicated that OATP1B3 has a similar capacity in taking up taurocholate/TCA as Ntcp. Furthermore, TCA-induced bile flow was significantly impaired in Slc10a1-/- mice but partially recovered in Slc10a1hSLC01B3-mice, indicating that OATP1B3 can partially compensate the NTCP function in vivo. Liver-specific overexpression of OATP1B3 markedly increased the level of hepatic conjugated BA and cholestatic liver injury in 1% CA-fed and BDL mice. Mechanistic studies revealed that conjugated BAs stimulated Ccl2 and Cxcl2 in hepatocytes to increase hepatic neutrophil infiltration and proinflammatory cytokine production (eg, IL-6), which activated STAT3 to repress OATP1B3 expression by binding to its promoter. CONCLUSIONS: Human OATP1B3 is a significant BA uptake transporter and can partially compensate Ntcp for conjugated BA uptake in mice. Its downregulation in cholestasis is an adaptive protective response.


Subject(s)
Cholestasis , Organic Anion Transporters , Humans , Mice , Animals , Liver/metabolism , Organic Anion Transporters/metabolism , Bile Acids and Salts/metabolism , Ursodeoxycholic Acid
18.
Cell Death Dis ; 14(5): 307, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147302

ABSTRACT

The mitochondrial integrity and function in endothelial cells are essential for angiogenesis. TIMM44 (translocase of inner mitochondrial membrane 44) is essential for integrity and function of mitochondria. Here we explored the potential function and the possible mechanisms of TIMM44 in angiogenesis. In HUVECs, human retinal microvascular endothelial cells and hCMEC/D3 brain endothelial cells, silence of TIMM44 by targeted shRNA largely inhibited cell proliferation, migration and in vitro capillary tube formation. TIMM44 silencing disrupted mitochondrial functions in endothelial cells, causing mitochondrial protein input arrest, ATP reduction, ROS production, and mitochondrial depolarization, and leading to apoptosis activation. TIMM44 knockout, by Cas9-sgRNA strategy, also disrupted mitochondrial functions and inhibited endothelial cell proliferation, migration and in vitro capillary tube formation. Moreover, treatment with MB-10 ("MitoBloCK-10"), a TIMM44 blocker, similarly induced mitochondrial dysfunction and suppressed angiogenic activity in endothelial cells. Contrarily, ectopic overexpression of TIMM44 increased ATP contents and augmented endothelial cell proliferation, migration and in vitro capillary tube formation. In adult mouse retinas, endothelial knockdown of TIMM44, by intravitreous injection of endothelial specific TIMM44 shRNA adenovirus, inhibited retinal angiogenesis, causing vascular leakage, acellular capillary growth, and retinal ganglion cells degeneration. Significant oxidative stress was detected in TIMM44-silenced retinal tissues. Moreover, intravitreous injection of MB-10 similarly induced oxidative injury and inhibited retinal angiogenesis in vivo. Together, the mitochondrial protein TIMM44 is important for angiogenesis in vitro and in vivo, representing as a novel and promising therapeutic target of diseases with abnormal angiogenesis.


Subject(s)
Endothelial Cells , Mitochondrial Proteins , Animals , Mice , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Endothelial Cells/metabolism , Mitochondria/metabolism , Cell Proliferation , Cell Movement , RNA, Small Interfering/metabolism , Adenosine Triphosphate/metabolism , Mitochondrial Precursor Protein Import Complex Proteins
19.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838815

ABSTRACT

Vitamin B12 deficiency can lead to oxidative stress, which is known to be involved in neurodegenerative diseases such as Alzheimer's disease (AD). Mogrosides are plant-derived triterpene glycosides that exhibit anti-inflammatory and antioxidant activity in animal cell lines and mouse models. Since amyloid-ß toxicity is known to cause oxidative stress and damage to brain cells, we hypothesized that mogrosides may have a protective effect against AD. In this study, we investigated the potential anti-AD effect of mogrosides in vitamin B12-deficient wild-type N2 and in transgenic CL2355 Caenorhabditis elegans expressing amyloid-ß peptide. Our data indicated that mogrosides have a beneficial effect on the lifespan and egg-laying rate of N2 and vitamin B12-deficient N2 worms. Additionally, the results revealed that mogrosides can effectively delay the paralysis of CL2355 worms as determined by serotonin sensitivity assay. Our analysis showed that mogrosides increase the expression of oxidative protective genes in N2 worms fed with vitamin B12-deficient OP50 bacterium. We conclude that mogrosides may exert preventative rather than curative effects that counteract the detrimental vitamin B12-deficient environment in N2 and CL2355 C. elegans by modulating oxidation-related gene expression.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Mice , Animals , Caenorhabditis elegans , Animals, Genetically Modified , Vitamin B 12/metabolism , Alzheimer Disease/genetics , Antioxidants/pharmacology , Amyloid beta-Peptides/metabolism , Oxidative Stress , Caenorhabditis elegans Proteins/metabolism , Plant Extracts/pharmacology
20.
Nat Commun ; 14(1): 29, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759512

ABSTRACT

Cholangiocytes play a crucial role in bile formation. Cholangiocyte injury causes cholestasis, including primary biliary cholangitis (PBC). However, the etiology of PBC remains unclear despite being characterized as an autoimmune disease. Using single-cell RNA sequencing (scRNA-seq), fluorescence-activated-cell-sorting, multiplex immunofluorescence (IF) and RNAscope analyses, we identified unique DUOX2+ACE2+ small cholangiocytes in human and mouse livers. Their selective decrease in PBC patients was associated with the severity of disease. Moreover, proteomics, scRNA-seq, and qPCR analyses indicated that polymeric immunoglobulin receptor (pIgR) was highly expressed in DUOX2+ACE2+ cholangiocytes. Serum anti-pIgR autoantibody levels were significantly increased in PBC patients, regardless of positive and negative AMA-M2. Spatial transcriptomics and multiplex IF revealed that CD27+ memory B and plasma cells accumulated in the hepatic portal tracts of PBC patients. Collectively, DUOX2+ACE2+ small cholangiocytes are pathogenic targets in PBC, and preservation of DUOX2+ACE2+ cholangiocytes and targeting anti-pIgR autoantibodies may be valuable strategies for therapeutic interventions in PBC.


Subject(s)
Liver Cirrhosis, Biliary , Animals , Mice , Humans , Liver Cirrhosis, Biliary/genetics , Angiotensin-Converting Enzyme 2 , Dual Oxidases/genetics , Epithelial Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...