Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Vaccine ; 42(7): 1506-1511, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38355318

ABSTRACT

Substandard (including degraded) and falsified (SF) vaccines are a relatively neglected issue with serious global implications for public health. This has been highlighted during the rapid and widespread rollout of COVID-19 vaccines. There has been increasing interest in devices to screen for SF non-vaccine medicines including tablets and capsules to empower inspectors and standardise surveillance. However, there has been very limited published research focussed on repurposing or developing new devices for screening for SF vaccines. To our knowledge, rapid diagnostic tests (RDTs) have not been used for this purpose but have important potential for detecting falsified vaccines. We performed a proof-in-principle study to investigate their diagnostic accuracy using a diverse range of RDT-vaccine/falsified vaccine surrogate pairs. In an initial assessment, we demonstrated the utility of four RDTs in detecting seven vaccines. Subsequently, the four RDTs were evaluated by three blinded assessors with seven vaccines and four falsified vaccines surrogates. The results provide preliminary data that RDTs could be used by multiple international organisations, national medicines regulators and vaccine manufacturers/distributors to screen for falsified vaccines in supply chains, aligned with the WHO global 'Prevent, Detect and Respond' strategy.


Subject(s)
Counterfeit Drugs , Vaccines , Humans , Rapid Diagnostic Tests , COVID-19 Vaccines , Public Health
2.
Nanoscale ; 16(10): 5149-5163, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38265106

ABSTRACT

Given the growing scientific and industrial interests in green microalgae, a comprehensive understanding of the forces controlling the colloidal stability of these bioparticles and their interactions with surrounding aqueous microenvironment is required. Accordingly, we addressed here the electrostatic and hydrophobic surface properties of Chlorella vulgaris from the population down to the individual cell levels. We first investigated the organisation of the electrical double layer at microalgae surfaces on the basis of electrophoresis measurements. Interpretation of the results beyond zeta-potential framework underlined the need to account for both the hydrodynamic softness of the algae cells and the heterogeneity of their interface formed with the outer electrolyte solution. We further explored the nature of the structural charge carriers at microalgae interfaces through potentiometric proton titrations. Extraction of the electrostatic descriptors of interest from such data was obscured by cell physiology processes and dependence thereof on prevailing measurement conditions, which includes light, temperature and medium salinity. As an alternative, cell electrostatics was successfully evaluated at the cellular level upon mapping the molecular interactions at stake between (positively and negatively) charged atomic force microscopy tips and algal surface via chemical force microscopy. A thorough comparison between charge-dependent tip-to-algae surface adhesion and hydrophobicity level of microalgae surface evidenced that the contribution of electrostatics to the overall interaction pattern is largest, and that the electrostatic/hydrophobic balance can be largely modulated by pH. Overall, the combination of multiscale physicochemical approaches allowed a drawing of some of the key biosurface properties that govern microalgae cell-cell and cell-surface interactions.


Subject(s)
Chlorella vulgaris , Microalgae , Protons , Surface Properties , Water , Hydrophobic and Hydrophilic Interactions , Microalgae/metabolism
3.
J Hazard Mater ; 465: 133067, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38039813

ABSTRACT

COVID-19 outbreak led to a massive dissemination of protective polypropylene (PP) face masks in the environment, posing a new environmental risk amplified by mask photodegradation and fragmentation. Masks are made up of a several kilometres long-network of fibres with diameter from a few microns to around 20 µm. After photodegradation, these fibres disintegrate, producing water dispersible debris. Electrokinetics and particle stability observations support that photodegradation increases/decreases the charge/hydrophobicity of released colloidal fragments. This change in hydrophobicity is related to the production of UV-induced carbonyl and hydroxyl reactive groups detectable after a few days of exposure. Helical content, surface roughness and specific surface area of mask fibres are not significantly impacted by photodegradation. Fragmentation of fibres makes apparent, at the newly formed surfaces, otherwise-buried additives like TiO2 nanoparticles and various organic components. Mortality of gammarids is found to increase significantly over time when fed with 3 days-UV aged masks that carry biofilms grown in river, which is due to a decreased abundance of microphytes therein. In contrast, bacteria abundance and microbial community composition remain unchanged regardless of mask degradation. Overall, this work reports physicochemical properties of pristine and photodegraded masks, and ecosystemic functions and ecotoxicity of freshwater biofilms they can carry.


Subject(s)
Microbiota , Rivers , Masks , Photolysis , Polypropylenes , Biofilms , Plastics
4.
Nat Commun ; 14(1): 6153, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788991

ABSTRACT

Approximately 10% of antimicrobials used by humans in low- and middle-income countries are estimated to be substandard or falsified. In addition to their negative impact on morbidity and mortality, they may also be important drivers of antimicrobial resistance. Despite such concerns, our understanding of this relationship remains rudimentary. Substandard and falsified medicines have the potential to either increase or decrease levels of resistance, and here we discuss a range of mechanisms that could drive these changes. Understanding these effects and their relative importance will require an improved understanding of how different drug exposures affect the emergence and spread of resistance and of how the percentage of active pharmaceutical ingredients in substandard and falsified medicines is temporally and spatially distributed.


Subject(s)
Counterfeit Drugs , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial
5.
Vaccine ; 41(47): 6960-6968, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37865599

ABSTRACT

Preventing, detecting, and responding to substandard and falsified vaccines is of critical importance for ensuring the safety, efficacy, and public trust in vaccines. This is of heightened importance in context of public health crisis, such as the COVID-19 pandemic, in which extreme world-wide shortages of vaccines provided a fertile ground for exploitation by falsifiers. Here, a proof-of-concept study explored the feasibility of using a handheld Spatially Offset Raman Spectroscopy (SORS) device to authenticate COVID-19 vaccines through rapid analysis of unopened vaccine vials. The results show that SORS can verify the chemical identity of dominant excipients non-invasively through vaccine vial walls. The ability of SORS to identify potentially falsified COVID-19 vaccines was demonstrated by measurement of surrogates for falsified vaccines contained in vaccine vials. In all cases studied, the SORS technique was able to differentiate between surrogate samples from the genuine COVISHIELD™ vaccine. The genuine vaccines tested included samples from six batches across two manufacturing sites to account for any potential variations between batches or manufacturing sites. Batch and manufacturing site variations were insignificant. In conjunction with existing security features, for example on labels and packaging, SORS provided an intrinsic molecular fingerprint of the dominant excipients of the vaccines. The technique could be extended to other COVID-19 and non-COVID-19 vaccines, as well as other liquid medicines. As handheld and portable SORS devices are commercially available and widely used for other purposes, such as airport security, they are rapidly deployable non-invasive screening tools for vaccine authentication.


Subject(s)
COVID-19 , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , COVID-19 Vaccines , Excipients , Pandemics , COVID-19/prevention & control
6.
Lancet Glob Health ; 11(8): e1308-e1313, 2023 08.
Article in English | MEDLINE | ID: mdl-37474237

ABSTRACT

In this Viewpoint, we discuss how the identification of oral antibiotics and their distinction from other commonly used medicines can be challenging for consumers, suppliers, and health-care professionals. There is a large variation in the names that people use to refer to antibiotics and these often relate to their physical appearance, although antibiotics come in many different physical presentations. We also reflect on how the physical appearance of medicine influences health care and public health by affecting communication between patients and health-care professionals, dispensing , medicine use, and the public understanding of health campaigns. Furthermore, we report expert and stakeholder consultations on improving the identification of oral antibiotics and discuss next steps towards a new identification system for antibiotics. We propose to use the physical appearance as a tool to support and nudge awareness about antibiotics and their responsible use.


Subject(s)
Anti-Bacterial Agents , Delivery of Health Care , Humans , Anti-Bacterial Agents/therapeutic use , Health Personnel , Health Promotion , Health Facilities
7.
Nat Commun ; 14(1): 2553, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137893

ABSTRACT

Bacterial biofilms are surface-attached communities that are difficult to eradicate due to a high tolerance to antimicrobial agents. The use of non-biocidal surface-active compounds to prevent the initial adhesion and aggregation of bacterial pathogens is a promising alternative to antibiotic treatments and several antibiofilm compounds have been identified, including some capsular polysaccharides released by various bacteria. However, the lack of chemical and mechanistic understanding of the activity of these polymers limits their use to control biofilm formation. Here, we screen a collection of 31 purified capsular polysaccharides and first identify seven new compounds with non-biocidal activity against Escherichia coli and/or Staphylococcus aureus biofilms. We measure and theoretically interpret the electrophoretic mobility of a subset of 21 capsular polysaccharides under applied electric field conditions, and we show that active and inactive polysaccharide polymers display distinct electrokinetic properties and that all active macromolecules share high intrinsic viscosity features. Despite the lack of specific molecular motif associated with antibiofilm properties, the use of criteria including high density of electrostatic charges and permeability to fluid flow enables us to identify two additional capsular polysaccharides with broad-spectrum antibiofilm activity. Our study therefore provides insights into key biophysical properties discriminating active from inactive polysaccharides. The characterization of a distinct electrokinetic signature associated with antibiofilm activity opens new perspectives to identify or engineer non-biocidal surface-active macromolecules to control biofilm formation in medical and industrial settings.


Subject(s)
Anti-Infective Agents , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Biofilms , Anti-Bacterial Agents/pharmacology , Bacteria , Polymers , Microbial Sensitivity Tests
8.
BMJ Glob Health ; 8(3)2023 03.
Article in English | MEDLINE | ID: mdl-36921990

ABSTRACT

OBJECTIVES: Substandard and falsified (SF) antiretrovirals (ARVs) risk poor outcomes and drug resistance, potentially affecting millions of people in need of treatment and prevention. We assessed the available evidence on SF ARV and related medical devices to discuss their potential public health impact. METHODS: Searches were conducted in Embase, PubMed, Google, Google Scholar, Web of Science and websites with interest in ARV quality in English and French up to 30 November 2021. Publications reporting on the prevalence of SF ARV were assessed in a quantitative analysis using the Medicine Quality Assessment Reporting Guidelines (MEDQUARG). RESULTS: We included 205 publications on SF ARV and 11 on SF medical devices. Nineteen prevalence surveys of SF ARV, published between 2003 and 2021, were included, with no surveys relevant to SF medical devices. The prevalence survey sample size ranged from 3 to 2630 samples (median (Q1-Q3): 16.0 (10.5-44.5); 3 (15.8%) used random outlet sampling methods. Of the 3713 samples included in the prevalence surveys, 1.4% (n=51) failed at least one test. Efavirenz, nevirapine and lamivudine-nevirapine-stavudine combination were the most surveyed ARV with failure frequencies of 3.6% (7/193), 2.6% (5/192) and 2.8% (5/177), respectively. The median (Q1%-Q3%) concordance with the MEDQUARG criteria was 42.3% (34.6%-55.8%). CONCLUSION: These results suggest that there are few data in the public domain of the quality of ARV in supply chains; the proportion of SF ARV is relatively low in comparison to other classes of essential medicines. Even a low proportion of the ARV supply chain being poor quality could make a large difference in the HIV/AIDS international landscape. The 95-95-95 target for 2026 and other international targets could be greatly hampered if even 1% of the millions of people taking ARV (for both prevention and prophylaxis) receive medicines that do not meet quality standards. More surveillance of SF ARV is needed to ensure issues are detected.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Nevirapine/therapeutic use , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/epidemiology , Anti-Retroviral Agents/therapeutic use
9.
Sci Rep ; 12(1): 21997, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539480

ABSTRACT

Falsified medicines are a major threat to global health. Antimalarial drugs have been particularly targeted by criminals. As DNA analysis has revolutionized forensic criminology, we hypothesized that these techniques could also be used to investigate the origins of falsified medicines. Medicines may contain diverse adventitious biological contamination, and the sealed nature of blister-packages may capture and preserve genetic signals from the manufacturing processes allowing identification of production source(s). We conducted a blinded pilot study to determine if such environmental DNA (eDNA) could be detected in eleven samples of falsified and genuine artesunate antimalarial tablets, collected in SE Asia, which could be indicative of origin. Massively Parallel Sequencing (MPS) was used to characterize microbial and eukaryote diversity. Two mitochondrial DNA analysis approaches were explored to detect the presence of human DNA. Trace eDNA from these low biomass samples demonstrated sample specific signals using two target markers. Significant differences in bacterial and eukaryote DNA community structures were observed between genuine and falsified tablets and between different packaging types of falsified artesunate. Human DNA, which was indicative of likely east Asian ancestry, was found in falsified tablets. This pilot study of the 'pharmabiome' shows the potential of environmental DNA as a powerful forensic tool to assist with the identification of the environments, and hence location and timing, of the source and manufacture of falsified medicines, establish links between seizures and complement existing tools to build a more complete picture of criminal trade routes. The finding of human DNA in tablets raises important ethical issues that need to be addressed.


Subject(s)
Antimalarials , Counterfeit Drugs , DNA, Environmental , Humans , Artesunate , Pilot Projects , Counterfeit Drugs/analysis , Tablets
10.
Front Mol Biosci ; 9: 938099, 2022.
Article in English | MEDLINE | ID: mdl-36032680

ABSTRACT

The coronavirus disease (COVID-19) caused by a coronavirus identified in December 2019 has caused a global pandemic. COVID-19 was declared a pandemic in March 2020 and has led to more than 6.3 million deaths. The pandemic has disrupted world travel, economies, and lifestyles worldwide. Although vaccination has been an effective tool to reduce the severity and spread of the disease there is a need for more concerted approaches to fighting the disease. COVID-19 is characterised as a severe acute respiratory syndrome . The severity of the disease is associated with a battery of comorbidities such as cardiovascular diseases, cancer, chronic lung disease, and renal disease. These underlying diseases are associated with general cellular stress. Thus, COVID-19 exacerbates outcomes of the underlying conditions. Consequently, coronavirus infection and the various underlying conditions converge to present a combined strain on the cellular response. While the host response to the stress is primarily intended to be of benefit, the outcomes are occasionally unpredictable because the cellular stress response is a function of complex factors. This review discusses the role of the host stress response as a convergent point for COVID-19 and several non-communicable diseases. We further discuss the merits of targeting the host stress response to manage the clinical outcomes of COVID-19.

11.
BMJ Glob Health ; 7(8)2022 08.
Article in English | MEDLINE | ID: mdl-35918072

ABSTRACT

OBJECTIVE: Substandard and falsified (SF) veterinary medicines affect animal health, agricultural production and food security and will influence antimicrobial resistance (AMR) in both animals and humans. Yet, our understanding of their extent and impact is poor. We assess the available public domain evidence on the epidemiology of SF veterinary medicines, to better understand their prevalence and distribution and their public health impact on animals and humans. METHODS: Searches were conducted in Embase, PubMed, MEDLINE, Global Health, Web of Science, CAB Abstracts, Scopus, Google Scholar, Google and websites with interest in veterinary medicines quality up to 28 February 2021. Identified articles in English and French were screened for eligibility. The Medicine Quality Assessment Reporting Guidelines were used to assess the quality of prevalence surveys. RESULTS: Three hundred and fourteen publications were included with a failure frequency (the percentage of samples that failed at least one quality test) of 6.5% (2335/35 733). The majority of samples were from post-marketing surveillance by medicines regulatory authorities of the Republic of Korea and China. A small proportion (3.5%) of samples, all anti-infectives, were from 20 prevalence surveys, with more than half (53.1%, 662/1246) collected in low-income and lower middle-income countries in Africa and Asia. The prevalence survey sample size ranged from 4 to 310 samples (median (Q1-Q3): 50 (27-80)); 55.0% of surveys used convenience outlet sampling methods. In 20 prevalence surveys more than half of the samples (52.0%, 648/1246) failed at least one quality test. The most common defects reported were out-of-specification active pharmaceutical ingredient(s) (API) content, failure of uniformity of units and disintegration tests. Almost half of samples (49.7%, 239/481) that failed API content tests contained at least one of the stated APIs below pharmacopoeial limits. Fifty-two samples (4.2% of all samples) contained one or more incorrect API. One hundred and twenty-three publications described incidents (recalls/seizures/case reports) of SF veterinary medicines in 29 countries. CONCLUSION: The data suggest that SF veterinary products are likely to be a serious animal and public health problem that has received limited attention. However, few studies of SF veterinary medicines are available and are geographically restricted. Lower API content and disintegration/dissolution than recommended by pharmacopoeial standards risks treatment failure, animal suffering and contribute to AMR. Our findings highlight the need of more research, with robust methodology, to better inform policy and implement measures to assure the quality of veterinary medicines within supply chains. The mechanism and impact of SF veterinary products on animal and human health, agricultural production, their economy and AMR need more transdisciplinary research.


Subject(s)
Counterfeit Drugs , One Health , Humans , Income , Poverty , Public Health
12.
BMJ Glob Health ; 7(8)2022 08.
Article in English | MEDLINE | ID: mdl-35981806

ABSTRACT

OBJECTIVES: Antimicrobial resistance (AMR) is a significant global health threat with substandard and falsified (SF) antibiotics being neglected contributing factors. With their relationships poorly understood, more research is needed in order to determine how interventions to reduce SF antibiotics should be ranked as priorities in national AMR action plans. We assessed the evidence available on the global prevalence of SF antibiotics, examined the quality of the evidence and discussed public health impact. MATERIALS/METHODS: We searched PubMed, Embase, Google and Google Scholar for publications on antibiotic quality up to 31 December 2020. Publications reporting on the prevalence of SF antibiotics were evaluated for quantitative analysis and assessed using the Medicines Quality Assessment Reporting Guidelines. RESULTS: Of the 10 137 screened publications, 648 were relevant to antibiotic quality. One hundred and six (16.4%) surveys, published between 1992 and 2020 and conducted mainly in low-income and middle-income countries (LMICs) (89.9% (480/534) of the data points), qualified for quantitative analysis. The total number of samples tested for quality in prevalence surveys was 13 555, with a median (Q1-Q3) number of samples per survey of 47 (21-135). Of the 13 555 samples, 2357 (17.4%) failed at least one quality test and the median failure frequency (FF) per survey was 19.6% (7.6%-35.0%). Amoxicillin, sulfamethoxazole-trimethoprim and ciprofloxacin were the most surveyed antibiotics, with FF of 16.1% (355/2208), 26.2% (329/1255) and 10.4% (366/3511), respectively. We identified no SF survey data for antibiotics in the WHO 'Reserve' group. The mean Medicine Quality Assessment Reporting Guidelines score was 11 (95% CI 10.1 to 12.2) out of 26. CONCLUSIONS: SF antibiotics are widely spread with higher prevalence in LMICs. The quality of the evidence is poor, and these data are not generalisable that 17.4% of global antibiotic supply is SF. However, the evidence we have suggests that interventions to enhance regulatory, purchasing and financial mechanisms to improve the global antibiotic supply are needed. PROSPERO REGISTRATION NUMBER: CRD42019124988.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/therapeutic use , Global Health , Humans , Poverty , Surveys and Questionnaires
13.
Cells ; 10(11)2021 10 22.
Article in English | MEDLINE | ID: mdl-34831072

ABSTRACT

Malaria is still one of the major killer parasitic diseases in tropical settings, posing a public health threat. The development of antimalarial drug resistance is reversing the gains made in attempts to control the disease. The parasite leads a complex life cycle that has adapted to outwit almost all known antimalarial drugs to date, including the first line of treatment, artesunate. There is a high unmet need to develop new strategies and identify novel therapeutics to reverse antimalarial drug resistance development. Among the strategies, here we focus and discuss the merits of the development of antimalarials targeting the Heat shock protein 90 (Hsp90) due to the central role it plays in protein quality control.


Subject(s)
Antimalarials/pharmacology , Drug Design , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Plasmodium falciparum/metabolism , Amino Acid Sequence , Animals , Antimalarials/chemistry , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans
14.
PLoS Negl Trop Dis ; 15(9): e0009539, 2021 09.
Article in English | MEDLINE | ID: mdl-34591842

ABSTRACT

Substandard and falsified (SF) antimalarials have devastating consequences including increased morbidity, mortality and economic losses. Portable medicine quality screening devices are increasingly available, but whether their use for the detection of SF antimalarials is cost-effective is not known. We evaluated the cost-effectiveness of introducing such devices in post-market surveillance in pharmacies in Laos, conservatively focusing on their outcome in detecting SF artemisinin-based combination therapies (ACTs). We simulated the deployment of six portable screening devices: two handheld near-infrared [MicroPHAZIR RX, NIR-S-G1], two handheld Raman [Progeny, TruScan RM]; one portable mid-infrared [4500a FTIR] spectrometers, and single-use disposable paper analytical devices [PADs]. We considered two scenarios with high and low levels of SF ACTs. Different sampling strategies in which medicine inspectors would test 1, 2, or 3 sample(s) of each brand of ACT were evaluated. Costs of inspection including device procurement, inspector time, reagents, reference testing, and replacement with genuine ACTs were estimated. Outcomes were measured as disability adjusted life years (DALYs) and incremental cost-effectiveness ratios were estimated for each device compared with a baseline of visual inspections alone. In the scenario with high levels of SF ACTs, all devices were cost-effective with a 1-sample strategy. In the scenario of low levels of SF ACTs, only four devices (MicroPHAZIR RX, 4500a FTIR, NIR-S-G1, and PADs) were cost-effective with a 1-sample strategy. In the multi-way comparative analysis, in both scenarios the NIR-S-G1 testing 2 samples was the most cost-effective option. Routine inspection of ACT quality using portable screening devices is likely to be cost-effective in the Laos context. This work should encourage policy-makers or regulators to further investigate investment in portable screening devices to detect SF medicines and reduce their associated undesired health and economic burdens.


Subject(s)
Antimalarials/chemistry , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Counterfeit Drugs/analysis , Substandard Drugs/analysis , Antimalarials/economics , Chemistry Techniques, Analytical/economics , Community Pharmacy Services , Cost-Benefit Analysis , Counterfeit Drugs/economics , Humans , Laos/epidemiology , Malaria/drug therapy , Malaria/economics , Malaria/epidemiology , Product Surveillance, Postmarketing , Substandard Drugs/economics
15.
PLoS Negl Trop Dis ; 15(9): e0009360, 2021 09.
Article in English | MEDLINE | ID: mdl-34591844

ABSTRACT

BACKGROUND: Post-market surveillance is a key regulatory function to prevent substandard and falsified (SF) medicines from being consumed by patients. Field deployable technologies offer the potential for rapid objective screening for SF medicines. METHODS AND FINDINGS: We evaluated twelve devices: three near infrared spectrometers (MicroPHAZIR RX, NIR-S-G1, Neospectra 2.5), two Raman spectrometers (Progeny, TruScan RM), one mid-infrared spectrometer (4500a), one disposable colorimetric assay (Paper Analytical Devices, PAD), one disposable immunoassay (Rapid Diagnostic Test, RDT), one portable liquid chromatograph (C-Vue), one microfluidic system (PharmaChk), one mass spectrometer (QDa), and one thin layer chromatography kit (GPHF-Minilab). Each device was tested with a series of field collected medicines (FCM) along with simulated medicines (SIM) formulated in a laboratory. The FCM and SIM ranged from samples with good quality active pharmaceutical ingredient (API) concentrations, reduced concentrations of API (80% and 50% of the API), no API, and the wrong API. All the devices had high sensitivities (91.5 to 100.0%) detecting medicines with no API or the wrong API. However, the sensitivities of each device towards samples with 50% and 80% API varied greatly, from 0% to 100%. The infrared and Raman spectrometers had variable sensitivities for detecting samples with 50% and 80% API (from 5.6% to 50.0%). The devices with the ability to quantitate API (C-Vue, PharmaChk, QDa) had sensitivities ranging from 91.7% to 100% to detect all poor quality samples. The specificity was lower for the quantitative C-Vue, PharmaChk, & QDa (50.0% to 91.7%) than for all the other devices in this study (95.5% to 100%). CONCLUSIONS: The twelve devices evaluated could detect medicines with the wrong or none of the APIs, consistent with falsified medicines, with high accuracy. However, API quantitation to detect formulations similar to those commonly found in substandards proved more difficult, requiring further technological innovation.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Counterfeit Drugs/analysis , Drug Evaluation, Preclinical/instrumentation , Substandard Drugs/analysis , Drug Evaluation, Preclinical/methods , Lab-On-A-Chip Devices , Quality Control , Sensitivity and Specificity
16.
PLoS Negl Trop Dis ; 15(9): e0009674, 2021 09.
Article in English | MEDLINE | ID: mdl-34591852

ABSTRACT

BACKGROUND: Medicine quality screening devices hold great promise for post-market surveillance (PMS). However, there is little independent evidence on their field utility and usability to inform policy decisions. This pilot study in the Lao PDR tested six devices' utility and usability in detecting substandard and falsified (SF) medicines. METHODOLOGY/PRINCIPAL FINDINGS: Observational time and motion studies of the inspections by 16 Lao medicine inspectors of 1) the stock of an Evaluation Pharmacy (EP), constructed to resemble a Lao pharmacy, and 2) a sample set of medicines (SSM); were conducted without and with six devices: four handheld spectrometers (two near infrared: MicroPHAZIR RX, NIR-S-G1 & two Raman: Progeny, Truscan RM); one portable mid-infrared spectrometer (4500a), and single-use paper analytical devices (PAD). User experiences were documented by interviews and focus group discussions. Significantly more samples were wrongly categorised as pass/fail with the PAD compared to the other devices in EP inspections (p<0.05). The numbers of samples wrongly classified in EP inspections were significantly lower than in initial visual inspections without devices for 3/6 devices (NIR-S-G1, MicroPHAZIR RX, 4500a). The NIR-S-G1 had the fastest testing time per sample (median 93.5 sec, p<0.001). The time spent on EP visual inspection was significantly shorter when using a device than for inspections without devices, except with the 4500a, risking missing visual clues of samples being SF. The main user errors were the selection of wrong spectrometer reference libraries and wrong user interpretation of PAD results. Limitations included repeated inspections of the EP by the same inspectors with different devices and the small sample size of SF medicines. CONCLUSIONS/SIGNIFICANCE: This pilot study suggests policy makers wishing to implement portable screening devices in PMS should be aware that overconfidence in devices may cause harm by reducing inspectors' investment in visual inspection. It also provides insight into the advantages/limitations of diverse screening devices in the hands of end-users.


Subject(s)
Anti-Infective Agents/chemistry , Chemistry Techniques, Analytical/instrumentation , Counterfeit Drugs/analysis , Substandard Drugs/analysis , Chemistry Techniques, Analytical/methods , Humans , Laos/epidemiology , Pilot Projects , Pilots , Sensitivity and Specificity
19.
BMJ Glob Health ; 6(9)2021 09.
Article in English | MEDLINE | ID: mdl-34521627

ABSTRACT

OBJECTIVE: Good quality cardiovascular medicines and devices are crucial in the prevention and management of the ever-growing threats of cardiovascular diseases (CVDs) globally. Yet our current understanding of the extent and impact of substandard and falsified (SF) cardiovascular medical products is poor. Our objective was to review the available literature on SF cardiovascular medicines/devices, with a focus on prevalence studies to discuss their impacts on public health. METHODS: Searches were conducted in Embase, PubMed, Web of Science, Google Scholar, Google and websites with interest in medicines/devices quality up to 31 August 2020. Articles in English and French identified in these searches were screened for eligibility. The Medicine Quality Assessment Reporting Guidelines was used to assess the quality of prevalence surveys, and we report according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. RESULTS: A total of 279 articles were included, which were subcategorised into prevalence surveys (n=28), equivalence studies (n=118), stability studies (n=5), routine quality control analyses (n=15), bioavailability studies (n=2), recalls/seizures/case reports (n=77), general discussions (n=24) and reviews (n=10). A failure frequency (defined as the proportion of samples that failed at least one quality test described in the report) of 525 (15.4%) was observed for the 3414 samples tested for quality in the 27 prevalence surveys with sufficient information for inclusion in our quantitative analysis. Nineteen surveys (70.4%) used convenience outlet sampling. The majority (88.8%, 3032/3414) of samples included in prevalence surveys were collected from low-income and middle-income countries. The most common defects were out-of-specification active ingredient(s) content, impurity/contaminant content and impaired dissolution. We found 26 incidents describing SF cardiovascular devices with 181 related deaths but no prevalence surveys. CONCLUSION: The data suggest that SF cardiovascular products are likely to be a serious public health problem that has received limited attention. We do not suggest that 15.4% of cardiovascular medicines are SF, and our findings highlight the need for more research with robust methodology to provide more accurate prevalence estimates in order to inform policy and implement measures to ensure the quality of cardiovascular medicines and devices within the supply chain. Ensuring that CVD medical products are of good quality would help ensure effectiveness and that the benefits of therapy are realised in the prevention and treatment of CVDs.


Subject(s)
Cardiovascular Diseases , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , Humans , Income , Poverty , Public Health , Surveys and Questionnaires
20.
Microorganisms ; 9(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34442682

ABSTRACT

The gut microbiota is a complex and dynamic ecosystem whose balance and homeostasis are essential to the host's well-being and whose composition can be critically affected by various factors, including host stress. Parabacteroides distasonis causes well-known beneficial roles for its host, but is negatively impacted by stress. However, the mechanisms explaining its maintenance in the gut have not yet been explored, in particular its capacities to adhere onto (bio)surfaces, form biofilms and the way its physicochemical surface properties are affected by stressing conditions. In this paper, we reported adhesion and biofilm formation capacities of 14 unrelated strains of P. distasonis using a steam-based washing procedure, and the electrokinetic features of its surface. Results evidenced an important inter-strain variability for all experiments including the response to stress hormones. In fact, stress-induced molecules significantly impact P. distasonis adhesion and biofilm formation capacities in 35% and 23% of assays, respectively. This study not only provides basic data on the adhesion and biofilm formation capacities of P. distasonis to abiotic substrates but also paves the way for further research on how stress-molecules could be implicated in P. distasonis maintenance within the gut microbiota, which is a prerequisite for designing efficient solutions to optimize its survival within gut environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...