Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 55(30): 8523-8531, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27828131

ABSTRACT

Turbulence poses challenges in many atmospheric and underwater surveillance applications. The compressive line sensing (CLS) active imaging scheme has been demonstrated in simulations and test tank experiments to be effective in scattering media such as turbid coastal water, fog, and mist. The CLS sensing model adopts the distributed compressive sensing theoretical framework that exploits both intrasignal sparsity and the highly correlated nature of adjacent areas in a natural scene. During sensing operation, the laser illuminates the spatial light modulator digital micromirror device to generate a series of one-dimensional binary sensing patterns from a codebook to encode the current target line segment. A single element detector photomultiplier tube acquires target reflections as the encoder output. The target can then be recovered using the encoder output and a predicted on-target codebook that reflects the environmental interference of original codebook entries. In this work, we investigated the effectiveness of the CLS imaging system in a turbulent environment. The development of a compact CLS prototype will be discussed, as will a series of experiments using various turbulence intensities at the Naval Research Lab's Simulated Turbulence and Turbidity Environment. The experimental results showed that the time-averaged measurements improved both the signal-to-noise radio and the resolution of the reconstructed image in the extreme turbulence environment. The contributing factors for this intriguing and promising result will be discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...