Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Integr Neurosci ; 13: 70, 2019.
Article in English | MEDLINE | ID: mdl-31866840

ABSTRACT

Naked mole-rats (Heterocephalus glaber) are subterranean rodents that utilize their incisors for feeding, chisel-tooth digging of complex tunnel systems, social interactions, and defense in their eusocial colony structure. Previous studies have shown that naked mole-rats have morphological and anatomical adaptations that predict strong bite forces, namely, skulls that are relatively tall and wide, in addition to impressive masticatory musculature. However, no studies to date have directly measured bite force in this species or analyzed the relationship between bite force and social caste. In the current study, we assessed adult naked mole-rat maximum bite force in relation to body mass, in addition to considering each animal's position within the eusocial hierarchy (i.e., dominant versus subordinate). Each animal was permitted to freely interact with a piezo-resistive bite force sensor. Our results showed that bite force was correlated with body mass in subordinate but not in dominant naked mole-rats, and that subordinate animals exhibited a shorter latency in producing their first bite. Maximum bite force was significantly influenced by caste. In comparing bite force with available data from previous studies across 82 additional mammalian species, subordinate naked mole-rats exhibited a bite force that was 65% higher than predicted for their body size, comparable to Tasmanian devils and exceeding bite force values for all of the carnivorans included for comparison. These results supported the hypothesis that the naked mole-rat's bite force would exceed predictions based on body size due to the behavioral importance and specialization of the naked mole-rat incisors. This study provides insight into the differences in bite force across species, and the significant role that social and ecological factors might play in the evolutionary relationship between bite force performance and underlying anatomical structures.

2.
J Morphol ; 280(8): 1185-1196, 2019 08.
Article in English | MEDLINE | ID: mdl-31180596

ABSTRACT

Naked mole-rats (Heterocephalus glaber) are fossorial, eusocial rodents that exhibit the unusual capability of moving their lower incisors independently in lateral and rostroventral directions. The evolution of this trait would presumably also involve concurrent alterations in neck musculature to support and control movements of the lower incisors. In order to assess morphological adaptations that might facilitate these movements, we performed detailed dissections of the neck musculature of adult naked mole-rats. In addition to characterizing attachment sites of superficial, suprahyoid, and infrahyoid musculature, we also quantified muscle mass and mandibular features thought to be associated with gape (condyle height, condyle length, and jaw length). Based on muscle attachment sites, the platysma myoides may contribute to lateral movement of the lower incisor and hemi-mandible in naked mole-rats. The large digastric muscle is likely to be a main contributor to rostroventral movement of each lower incisor. The geniohyoid and mylohyoid muscles also likely contribute to rostroventral movements of the lower incisors, and the mylohyoid may also produce lateral spreading of the hemi-mandibles. The transverse mandibular (intermandibularis) muscle likely serves to reposition the lower incisors back to a midline orientation following a movement.


Subject(s)
Hyoid Bone/anatomy & histology , Incisor/physiology , Mole Rats/anatomy & histology , Movement , Neck Muscles/anatomy & histology , Animals , Body Weight , Organ Size
3.
Nat Commun ; 8: 14484, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230156

ABSTRACT

Neuronal migration from a germinal zone to a final laminar position is essential for the morphogenesis of neuronal circuits. While it is hypothesized that microtubule-actomyosin crosstalk is required for a neuron's 'two-stroke' nucleokinesis cycle, the molecular mechanisms controlling such crosstalk are not defined. By using the drebrin microtubule-actin crosslinking protein as an entry point into the cerebellar granule neuron system in combination with super-resolution microscopy, we investigate how these cytoskeletal systems interface during migration. Lattice light-sheet and structured illumination microscopy reveal a proximal leading process nanoscale architecture wherein f-actin and drebrin intervene between microtubules and the plasma membrane. Functional perturbations of drebrin demonstrate that proximal leading process microtubule-actomyosin coupling steers the direction of centrosome and somal migration, as well as the switch from tangential to radial migration. Finally, the Siah2 E3 ubiquitin ligase antagonizes drebrin function, suggesting a model for control of the microtubule-actomyosin interfaces during neuronal differentiation.


Subject(s)
Actomyosin/metabolism , Cell Movement , Cerebellum/metabolism , Cytoplasmic Granules/metabolism , Microtubules/metabolism , Neurons/cytology , Neuropeptides/metabolism , Actins/metabolism , Animals , Cell Differentiation , Cell Membrane/metabolism , HEK293 Cells , Humans , Mice, Inbred C57BL , Microscopy , Nanoparticles/chemistry , Neurons/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
J Neurophysiol ; 112(9): 2349-56, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25143544

ABSTRACT

Generally, a combination of kinematic, electromyographic (EMG), and force measurements are used to understand how an organism generates and controls movement. The chicken embryo has been a very useful model system for understanding the early stages of embryonic motility in vertebrates. Unfortunately, the size and delicate nature of embryos makes studies of motility during embryogenesis very challenging. Both kinematic and EMG recordings have been achieved in embryonic chickens, but two-dimensional force vector recordings have not. Here, we describe a dual-axis system for measuring force generated by the leg of embryonic chickens. The system employs two strain gauges to measure planar forces oriented with the plane of motion of the leg. This system responds to forces according to the principles of Pythagorean geometry, which allows a simple computational program to determine the force vector (magnitude and direction) generated during spontaneous motor activity. The system is able to determine force vectors for forces >0.5 mN accurately and allows for simultaneous kinematic and EMG recordings. This sensitivity is sufficient for force vector measurements encompassing most embryonic leg movements in midstage chicken embryos allowing for a more complete understanding of embryonic motility. Variations on this system are discussed to enable nonideal or alternative sensor arrangements and to allow for translation of this approach to other delicate model systems.


Subject(s)
Microscopy, Video/methods , Movement , Algorithms , Animals , Biomechanical Phenomena , Chick Embryo , Data Interpretation, Statistical , Embryonic Development , Microscopy, Video/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...