Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(10): e0264101, 2022.
Article in English | MEDLINE | ID: mdl-36302034

ABSTRACT

Low-intensity focused ultrasound (LIFU) is an increasingly applied method for achieving non-invasive brain stimulation. However, transmission of ultrasound through the human skull can substantially affect focal point characteristics of LIFU, including dramatic attenuation in intensity and refraction of focal point location. These effects depend on a high-dimensional parameter space, making these effects difficult to estimate from previous work. Instead, focal point properties of LIFU experiments are often estimated using numerical simulation of LIFU sonication through skull. However, this procedure presents many entry barriers to even computationally savvy investigators and often requires expensive computational hardware, impeding LIFU research. We present a novel MATLAB toolbox (data: doi:10.5068/D1QD60; Matlab Scripts: https://doi.org/10.5281/zenodo.5811122) for rapidly estimating beam properties of LIFU transmitted through bone. Users provide specific values for frequency of LIFU, bone thickness, angle at which LIFU is applied, depth of the LIFU focal point, and diameter of the transducer used and receive an estimation of the degree of refraction/attenuation expected for the given parameters.


Subject(s)
Skull , Transducers , Humans , Ultrasonography/methods , Skull/diagnostic imaging , Sonication , Head
2.
Sci Rep ; 11(1): 6100, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731821

ABSTRACT

Deep brain nuclei are integral components of large-scale circuits mediating important cognitive and sensorimotor functions. However, because they fall outside the domain of conventional non-invasive neuromodulatory techniques, their study has been primarily based on neuropsychological models, limiting the ability to fully characterize their role and to develop interventions in cases where they are damaged. To address this gap, we used the emerging technology of non-invasive low-intensity focused ultrasound (LIFU) to directly modulate left lateralized basal ganglia structures in healthy volunteers. During sonication, we observed local and distal decreases in blood oxygenation level dependent (BOLD) signal in the targeted left globus pallidus (GP) and in large-scale cortical networks. We also observed a generalized decrease in relative perfusion throughout the cerebrum following sonication. These results show, for the first time using functional MRI data, the ability to modulate deep-brain nuclei using LIFU while measuring its local and global consequences, opening the door for future applications of subcortical LIFU.


Subject(s)
Globus Pallidus , Magnetic Resonance Imaging , Ultrasonic Therapy , Adolescent , Adult , Female , Globus Pallidus/blood supply , Globus Pallidus/diagnostic imaging , Humans , Male
4.
Curr Biol ; 26(3): 351-5, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26776732

ABSTRACT

A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat.


Subject(s)
Memory, Short-Term , Odorants/analysis , Rats/physiology , Smell , Spatial Memory , Animals , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...