Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(19): 23255-23264, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37134186

ABSTRACT

A novel reactor methodology was developed for chemical looping ammonia synthesis processes using microwave plasma for pre-activation of the stable dinitrogen molecule before reaching the catalyst surface. Microwave plasma-enhanced reactions benefit from higher production of activated species, modularity, quick startup, and lower voltage input than competing plasma-catalysis technologies. Simple, economical, and environmentally benign metallic iron catalysts were used in a cyclical atmospheric pressure synthesis of ammonia. Rates of up to 420.9 µmol min-1 g-1 were observed under mild nitriding conditions. Reaction studies showed that both surface-mediated and bulk-mediated reaction domains were found to exist depending on the time under plasma treatment. The associated density functional theory (DFT) calculations indicated that a higher temperature promoted more nitrogen species in the bulk of iron catalysts but the equilibrium limited the nitrogen converion to ammonia, and vice versa. Generation of vibrationally active N2 and, N2+ ions is associated with lower bulk nitridation temperatures and increased nitrogen contents versus thermal-only systems. Additionally, the kinetics of other transition metal chemical looping ammonia synthesis catalysts (Mn and CoMo) were evaluated by high-resolution time-on-stream kinetic analysis and optical plasma characterization. This study sheds new light on phenomena arising in transient nitrogen storage, kinetics, effect of plasma treatment, apparent activation energies, and rate-limiting reaction steps.

2.
ACS Appl Mater Interfaces ; 15(20): 24296-24305, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37167454

ABSTRACT

Ammonia is emerging as a potential decarbonized H2 energy carrier when produced from renewable energy. The on-site production of liquid ammonia from stranded renewable energy can solve the current energy transportation challenges. The employment of microwave technology can produce the desired ammonia product at milder conditions with the supply of intermittent renewable energy sources. Our previous studies have indicated that the Cs-Ru/CeO2 catalyst is a promising catalyst for microwave-driven ammonia synthesis. In this study, the Cs-Ru/CeO2 catalyst mechanically mixed with carbon nanotubes (CNT) and chemically synthesized using coprecipitation and a hydrothermal method is investigated systematically at low temperatures and atmospheric pressure for microwave-assisted ammonia synthesis. Additionally, the combination of two Ru-based catalysts (Cs-Ru/CeO2 and Cs-Ru/CNT) is studied as well. Mechanical mixing of Cs-Ru/CeO2 with CNT exhibited superior activity as compared to the chemically synthesized Cs-Ru/CeO2-CNT catalyst. Besides the enhancement in dielectric property, the probable synergistic effect leads to increased interfacial polarization at the interface of the mechanically mixed catalyst, improving the overall heating and ammonia production rate. Moreover, the combined Ru-based catalyst also exhibited higher activity as compared to their individual activity toward ammonia synthesis. Numerous characterization techniques were performed, including thermal imaging camera and dielectric measurements, to better understand microwave interaction with the composite catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...