Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 100(9): 2223-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22829468

ABSTRACT

Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), L-lactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of e-beam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.


Subject(s)
Biocompatible Materials/chemistry , Lactic Acid/chemistry , Polymers/chemistry , Electrons , Microscopy, Atomic Force , Oxygen/chemistry , Photoelectron Spectroscopy , Polyesters , Spectrum Analysis, Raman , Surface Properties , Wettability
2.
Acta Biomater ; 7(2): 548-57, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20849986

ABSTRACT

Predicable and controlled degradation is not only central to the accurate delivery of bioactive agents and drugs, it also plays a vital role in key aspects of bone tissue engineering. The work addressed in this paper investigates the utilisation of e-beam irradiation in order to achieve a controlled (surface) degradation profile. This study focuses on the modification of commercially and clinically relevant materials, namely poly(L-lactic acid) (PLLA), poly(L-lactide-hydroxyapatite) (PLLA-HA), poly(L-lactide-glycolide) co-polymer (PLG) and poly(L-lactide-DL-lactide) co-polymer (PLDL). Samples were subjected to irradiation treatments using a 0.5MeV electron beam with delivered surface doses of 150 and 500 kGy. In addition, an acrylic attenuation shield was used for selected samples to control the penetration of the e-beam. E-beam irradiation induced chain scission in all polymers, as characterized by reduced molecular weights and glass transition temperatures (T(g)). Irradiation not only produced changes in the physical properties of the polymers but also had associated effects on surface erosion of the materials during hydrolytic degradation. Moreover, the extent to which both mechanical and hydrolytic degradation was observed is synonymous with the estimated penetration of the beam (as controlled by the employment of an attenuation shield).


Subject(s)
Biocompatible Materials/chemistry , Electrons , Polymers/chemistry , Calorimetry, Differential Scanning , Chromatography, Gel , Crystallization , Durapatite/chemistry , Lactic Acid/chemistry , Microscopy, Electron, Scanning , Molecular Weight , Polyesters/chemistry , Polyglactin 910/chemistry , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...