Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36297292

ABSTRACT

Gymnopilus consists of a widely distributed genus of basidiomycetes, especially in tropical regions of the world, such as Japan, Australia, Paraguay, and Brazil. This genus biosynthesizes interesting bioactive compounds, such as sesquiterpenoids, oligoisoprenoids, styrylpyrones, and lectins. In the present study, the aqueous extract of the basidiomata of Gymnopilus imperialis (Basidiomycota, Agaricomycetes, Agaricales, Hymenogastraceae) was obtained by using the accelerated solvent extraction (ASE) technique, followed by the precipitation of polysaccharide fraction with ethanol. Further purification by freeze-thawing processes, Fehling solution precipitation, and membrane dialysis with different pore sizes yield three main polysaccharide fractions (Gi-MRSW, Gi-PFME, and Gi-SFME). According to monosaccharide composition and 13C-NMR data, the Gi-MRSW and Gi-SFME fractions showed to be composed mainly of ß-glucans and Gi-PFME by a heterogalactan. Moreover, the immunomodulatory potential of Gi-MRSW was evaluated using RAW 264.7 murine macrophage as a study model. The nitric oxide production was significantly increased in treated samples, and the expression of inducible nitric oxide synthase (iNOS) showed that the fraction Gi-MRSW from G. imperialis induces the M1 polarization phenotype.

2.
Reproduction ; 152(5): 481-9, 2016 11.
Article in English | MEDLINE | ID: mdl-27492081

ABSTRACT

In vitro maturation (IVM) of oocytes in cattle is inefficient, and there is great interest in the development of approaches to improve maturation and fertilization rates. Intraovarian signalling molecules are being explored as potential additives to IVM media. One such factor is kit ligand (KITL), which stimulates the growth of oocytes. We determined if KITL enhances oocyte maturation in cattle. The two main isoforms of KITL (KITL1 and KITL2) were expressed in bovine cumulus-oocyte complexes (COC), and levels of mRNA increased during FSH-stimulated IVM. The addition of KITL to the culture medium increased the percentage of oocytes that reached meiosis II but did not affect cumulus expansion after 22 h of IVM. Addition of KITL reduced the levels of mRNA encoding natriuretic peptide precursor C (NPPC), a protein that holds oocytes in meiotic arrest, and increased the levels of mRNA encoding YBX2, an oocyte-specific factor involved in meiosis. Removal of the oocyte from the COC resulted in increased KITL mRNA levels and decreased NPPC mRNA levels in cumulus cells, and addition of denuded oocytes reversed these effects. Taken together, our results suggest that KITL enhances bovine oocyte nuclear maturation through a mechanism that involves NPPC, and that the oocyte regulates cumulus expression of KITL mRNA.


Subject(s)
Cumulus Cells/cytology , In Vitro Oocyte Maturation Techniques/veterinary , Natriuretic Peptide, C-Type/metabolism , Oocytes/cytology , Oogenesis/physiology , Stem Cell Factor/metabolism , Animals , Cattle , Cumulus Cells/metabolism , Female , Fertilization in Vitro , Meiosis/physiology , Oocytes/metabolism
3.
Reprod Fertil Dev ; 26(8): 1129-41, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24025608

ABSTRACT

In a 2×2 factorial experimental design, embryo development, cryotolerance and global gene expression of Nellore (Bos taurus indicus) and Simmental (Bos taurus taurus) blastocysts produced in vitro (IVP) and in vivo (multiple ovulation derived embryo, MODE) were assessed. Blastocyst production was higher in Nellore than in Simmental (47.7±2.0% vs 27.0±2.0%) cows. The total numbers of ova or embryos recovered (5.5±0.9 vs 3.7±0.8) and transferable embryos (3.8±1.0 vs 2.3±0.8) per cow were not different between breeds. Simmental and MODE (34.6% and 38.5%, n=75 and 70) blastocysts had higher survival rates after cryopreservation compared with Nellore and IVP (20.2% and 18.1%, n=89 and 94) embryos, respectively. Differences between transcriptomes were addressed by principal-component analysis, which indicated that gene expression was affected by subspecies (158 genes), origin (532 genes) and interaction between both subspecies and origin (53 genes). Several functional processes and pathways relevant to lipid metabolism and embryo viability involving differentially expressed genes were identified. The lipid metabolism-related genes were upregulated in Simmental (AUH and ELOVL6) and IVP (ACSL3 and ACSL6) blastocysts. The expression profiles of genes related to mitochondrial metabolism (ATP5B), oxidative stress (GPX4), apoptosis (DAD1, DAP, PRDX2), heat shock (HSPA5), pregnancy (IFNT2, PAG2) and cell differentiation (KRT18) varied between experimental groups.


Subject(s)
Blastocyst/physiology , Cryopreservation/veterinary , Fertilization in Vitro/veterinary , Fertilization , Gene Expression Profiling/veterinary , Gene Expression Regulation, Developmental , Insemination, Artificial/veterinary , Animals , Blastocyst/metabolism , Cattle , Cell Survival , Embryo Culture Techniques/veterinary , Embryo Transfer/veterinary , Female , Gene Expression Profiling/methods , Gene Regulatory Networks , In Vitro Oocyte Maturation Techniques/veterinary , Male , Oligonucleotide Array Sequence Analysis/veterinary , Pregnancy , Principal Component Analysis , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction/veterinary , Species Specificity
4.
Reproduction ; 146(1): 27-35, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23641036

ABSTRACT

Oocyte-secreted factors (OSFs) regulate differentiation of cumulus cells and are of pivotal relevance for fertility. Bone morphogenetic protein 15 (BMP15) and fibroblast growth factor 10 (FGF10) are OSFs and enhance oocyte competence by unknown mechanisms. We tested the hypothesis that BMP15 and FGF10, alone or combined in the maturation medium, enhance cumulus expansion and expression of genes in the preovulatory cascade and regulate glucose metabolism favouring hyaluronic acid production in bovine cumulus-oocyte complexes (COCs). BMP15 or FGF10 increased the percentage of fully expanded COCs, but the combination did not further stimulate it. BMP15 increased cumulus cell levels of mRNA encoding a disintegrin and metalloprotease 10 (ADAM10), ADAM17, amphiregulin (AREG), and epiregulin (EREG) at 12 h of culture and of prostaglandin (PG)-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3) and tumor necrosis factor alpha-induced protein 6 (TNFAIP6 (TSG6)) at 22 h of culture. FGF10 did not alter the expression of epidermal growth factor-like factors but enhanced the mRNA expression of PTGS2 at 4 h, PTX3 at 12 h, and TNFAIP6 at 22 h. FGF10 and BMP15 stimulated glucose consumption by cumulus cells but did not affect lactate production or levels of mRNA encoding glycolytic enzymes phosphofructokinase and lactate dehydrogenase A. Each growth factor increased mRNA encoding glucosamine:fructose-6-PO4 transaminases, key enzymes in the hexosamine pathway leading to hyaluronic acid production, and BMP15 also stimulated hyaluronan synthase 2 (HAS2) mRNA expression. This study provides evidence that BMP15 and FGF10 stimulate expansion of in vitro-matured bovine COCs by driving glucose metabolism toward hyaluronic acid production and controlling the expression of genes in the ovulatory cascade, the first acting upon ADAM10, ADAM17, AREG, and EREG and the second on downstream genes, particularly PTGS2.


Subject(s)
Bone Morphogenetic Protein 15/physiology , Cumulus Cells/physiology , Fibroblast Growth Factor 10/physiology , Oocytes/physiology , Ovulation , Animals , Cattle , Female , Gene Expression , Gene Expression Regulation , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...