Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 49(2): 1151-1159, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35013863

ABSTRACT

BACKGROUND: Despite commonly use for treatment of type II diabetes, possible effects of glipizide on nuclear transport and DNA damage in cells are unknown. Since clinical response of glipizide may change with aging, the aim of the study was to investigate the effect of glipizide by comparing mature and senescent adipocytes. METHODS AND RESULTS: The effects of glipizide were investigated in 3T3-L1 adipocytes. Effective and lethal doses were determined by real-time monitoring iCELLigence system. Comet assay was performed to determine DNA damage and quantitative PCR was conducted to detect gene expression levels. RAN expressions were found to be up regulated in mature 180 µM glipizide treated adipocytes compared to control group (p < 0.05); whereas down regulated in senescent 180 µM glipizide treated adipocytes compared to their control adipocytes (p < 0.05). Olive Tail Moment values were significantly higher in mature 180 µM glipizide treated adipocytes (MTG) and senescent 180 µM glipizide treated adipocytes (STG) comparing their untreated controls (p < 0.001 and p < 0.001 respectively). Also class 5 comets that shows severe DNA damage were found to be higher in both MTG and STG groups than their controls (p < 0.001 and p < 0.001, respectively). OTM values were higher in STG than MTG (p < 0.001). CONCLUSIONS: This is the first study that reports glipizide caused DNA damage increasing with senescence in adipocytes. As a response to glipizide treatment Ran gene expression increased in mature; and decreased in senescent adipocytes. Further studies are needed to reveal the effect of glipizide on DNA and nuclear interactions in molecular level.


Subject(s)
Active Transport, Cell Nucleus/drug effects , DNA Damage/drug effects , Glipizide/pharmacology , 3T3-L1 Cells/drug effects , Active Transport, Cell Nucleus/physiology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cell Differentiation , DNA Damage/genetics , Glipizide/adverse effects , Glipizide/metabolism , Mice
2.
Curr Drug Saf ; 16(3): 252-258, 2021.
Article in English | MEDLINE | ID: mdl-33413066

ABSTRACT

BACKGROUND: Clopidogrel has been commonly prescribed as a selective P2Y12 receptor antagonist to reduce heart attack and stroke risk. Nearly 10% of absorbed clopidogrel is metabolized to active forms by cytochrome P450 (CYP) enzymes in the liver and 90% to inactive clopidogrel carboxylate by esterases. OBJECTIVE: Since different forms of clopidogrel have cytotoxic potential, our aim was to determine the effect of 7.5, 40, and 75µM clopidogrel over DNA damage in adipocytes and hepatocytes. METHODS: In the present study, DNA damage was investigated by Comet analysis using 3T3-L1 adipocytes and Alpha Mouse 12 (AML-12) hepatocytes. RESULTS: DNA fragmentation was found to be increased as a response to 7.5 µM, 40 µM, and 75 µM clopidogrel treatment compared to non-treated control groups in AML-12 hepatocytes (p<0.01, p<0.001, p<0.01 respectively) and 3T3-L1 adipocytes (p<0.001, p<0.001 and p<0.001respectively). DNA damage levels as a response to clopidogrel treatment were found to be higher in 3T3-L1 adipocytes than AML-12 hepatocytes. Also, DNA damage levels in adipocytes and hepatocytes were found to increase dose-dependently for 7.5 and 40 µM clopidogrel, whereas decreased as a response to 75 µM. CONCLUSION: According to our results, clopidogrel results in more DNA damage in adipocytes than in hepatocytes. The molecular mechanism of clopidogrel genotoxicity needs to be further investigated especially in adipose tissue.


Subject(s)
Adipocytes , Leukemia, Myeloid, Acute , 3T3-L1 Cells , Animals , Clopidogrel/toxicity , DNA Damage , Hepatocytes , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...