Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Healthc Eng ; 2018: 6573947, 2018.
Article in English | MEDLINE | ID: mdl-29850000

ABSTRACT

In this work, tunable nonwoven mats based on poly(3-hydroxybutyrate) (PHB) and type I collagen (Coll) were successfully produced by electrospinning. The PHB/Coll weight ratio (fixed at 100/0, 70/30, and 50/50, resp.) was found to control the morphological, thermal, mechanical, and degradation properties of the mats. Increasing collagen amounts led to larger diameters of the fibers (in the approximate range 600-900 nm), while delaying their thermal decomposition (from 245°C to 262°C). Collagen also accelerated the hydrolytic degradation of the mats upon incubation in aqueous medium at 37°C for 23 days (with final weight losses of 1%, 15%, and 23% for 100/0, 70/30, and 50/50 samples, resp.), as a result of increased mat wettability and reduced PHB crystallinity. Interestingly, 70/30 meshes were the ones displaying the lowest stiffness (~116 MPa; p < 0.05 versus 100/0 and 50/50 meshes), while 50/50 samples had an elastic modulus comparable to that of 100/0 ones (~250 MPa), likely due to enhanced physical crosslinking of the collagen chains, at least at high protein amounts. All substrates were also found to allow for good viability and proliferation of murine fibroblasts, up to 6 days of culture. Collectively, the results evidenced the potential of as-spun PHB/Coll meshes for tissue engineering applications.


Subject(s)
Biocompatible Materials , Collagen Type I/chemistry , Hydroxybutyrates/chemistry , Polyesters/chemistry , Tissue Engineering/instrumentation , 3-Hydroxybutyric Acid/chemistry , Animals , Cell Proliferation , Cell Survival , Collagen/chemistry , Hot Temperature , Hydrolysis , Mice , NIH 3T3 Cells , Polymers , Porosity , Powders , Pressure , Prohibitins , Stress, Mechanical , Tensile Strength , Tissue Engineering/methods , Wettability
2.
J Biomed Mater Res A ; 104(1): 186-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26264918

ABSTRACT

Crosslinking and denaturation were two variables that deeply affected the performance of collagen-based scaffolds designed for tissue regeneration. If crosslinking enhances the mechanical properties and the enzymatic resistance of collagen, while masking or reducing the available cell binding sites, denaturation has very opposite effects, as it impairs the mechanical and the enzymatic stability of collagen, but increases the number of exposed cell adhesive domains. The quantification of both crosslinking and denaturation was thus fundamental to the design of collagen-based scaffolds for selected applications. The aim of this work was to investigate the extents of crosslinking and denaturation of collagen-based films upon dehydrothermal (DHT) treatment, that is, one of the most commonly employed methods for zero-length crosslinking that shows the unique ability to induce partial denaturation. Swelling measurements, differential scanning calorimetry, Fourier transform infrared spectroscopy, colorimetric assays for the quantification of primary amines, and mechanical tests were performed to analyze the effect of the DHT temperature on crosslinking and denaturation. In particular, chemically effective and elastically effective crosslink densities were evaluated. Both crosslinking and denaturation were found to increase with the DHT temperature, although according to different trends. The results also showed that DHT treatments performed at temperatures up to 120°C maintained the extent of denaturation under 25%. Coupling a mild DHT treatment with further crosslinking may thus be very useful not only to modulate the crosslink density, but also to induce a limited amount of denaturation, which shows potential to partially compensate the loss of cell binding sites caused by crosslinking.


Subject(s)
Collagen/metabolism , Cross-Linking Reagents/chemistry , Prosthesis Design , Protein Denaturation , Tissue Scaffolds/chemistry , Animals , Calorimetry, Differential Scanning , Cattle , Elastic Modulus , Spectroscopy, Fourier Transform Infrared , Temperature , Trinitrobenzenesulfonic Acid , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...